AppendixBNotation
ΒΆSymbol | Description | Location |
---|---|---|
\(P \vee Q\) | Disjunction of propositions | Definition 1.1.2 |
\(P \wedge Q\) | Conjunction of propositions | Definition 1.1.2 |
\(\neg P\) | Negation of a proposition | Definition 1.1.2 |
\(P \implies Q\) | Conditional implication | Definition 1.2.1 |
\(P \iff Q\) | Biconditional implication | Definition 1.2.6 |
\(\forall\) | Universal quantifier | Definition 1.3.1 |
\(\exists\) | Existential quantifier | Definition 1.3.1 |
\(\exists !\) | Unique existential quantifier | Definition 1.3.3 |
\(\gcd(a,b)\) | greatest common divisor of two integers | Definition 1.7.2 |
\(\subseteq\) | subset | Definition 2.1.3 |
\(\mathscr{P}(A)\) | power set | Definition 2.1.6 |
\(\cup\) | union | Definition 2.2.1 |
\(\cap\) | intersection | Definition 2.2.1 |
\(\setminus\) | difference | Definition 2.2.1 |
\(A^c\) | complement of a set \(A\) | Definition 2.2.4 |
\(\displaystyle\bigcup_{A \in \mathcal{A}} A\) | union over a family \(A\) | Definition 2.3.2 |
\(\displaystyle\bigcap_{A \in \mathcal{A}} A\) | intersection over a family \(A\) | Definition 2.3.3 |
\(\mathbb{N}\) | Set of natural numbers | Item |
\(\mathbb{Z}\) | Set of integers | Item |
\(\mathbb{Q}\) | Set of rational numbers | Item |
\(\overline{\mathbb{Q}}\) | Set of algebraic numbers | Item |
\(\mathbb{R}\) | Set of real numbers | Item |
\(\mathbb{C}\) | Set of complex numbers | Item |