Skip to main content
\(\require{mathrsfs}\newcommand{\abs}[1]{\left| #1 \right|} \renewcommand{\emptyset}{\varnothing} \DeclareMathOperator{\dom}{dom} \DeclareMathOperator{\range}{rng} \DeclareMathOperator{\perm}{perm} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

AppendixBNotation

Symbol Description Location
\(P \vee Q\) Disjunction of propositions Definition 1.1.2
\(P \wedge Q\) Conjunction of propositions Definition 1.1.2
\(\neg P\) Negation of a proposition Definition 1.1.2
\(P \implies Q\) Conditional implication Definition 1.2.1
\(P \iff Q\) Biconditional implication Definition 1.2.6
\(\forall\) Universal quantifier Definition 1.3.1
\(\exists\) Existential quantifier Definition 1.3.1
\(\exists !\) Unique existential quantifier Definition 1.3.3
\(\gcd(a,b)\) greatest common divisor of two integers Definition 1.7.2
\(\subseteq\) subset Definition 2.1.3
\(\mathscr{P}(A)\) power set Definition 2.1.6
\(\cup\) union Definition 2.2.1
\(\cap\) intersection Definition 2.2.1
\(\setminus\) difference Definition 2.2.1
\(A^c\) complement of a set \(A\) Definition 2.2.4
\(\displaystyle\bigcup_{A \in \mathcal{A}} A\) union over a family \(A\) Definition 2.3.2
\(\displaystyle\bigcap_{A \in \mathcal{A}} A\) intersection over a family \(A\) Definition 2.3.3
\(\mathbb{N}\) Set of natural numbers Item
\(\mathbb{Z}\) Set of integers Item
\(\mathbb{Q}\) Set of rational numbers Item
\(\overline{\mathbb{Q}}\) Set of algebraic numbers Item
\(\mathbb{R}\) Set of real numbers Item
\(\mathbb{C}\) Set of complex numbers Item