
A Proposal for Toeplitz Matrix Calculations':' 

By Gilbert Strang 

In contrast to the usual (and successful) direct methods for Toeplitz systems 
Ax = b, we propose an algorithm based on the conjugate gradient method. The 
preconditioner is a circulant, so that all matrices have constant diagonals and all 
matrix-vector multiplications use the Fast Fourier Transform. We also suggest a 
technique for the eigenvalue problem, where current methods are less satisfactory. 
If the first indications are supported by further experiment, this new approach 
may have useful applications-including nearly Toeplitz systems, and parallel 
computations. 

A Toeplitz matrix is one with constant diagonals. The entries on the main 
diagonal share a common value ao; those on the first subdiagonal equal aI' and 
in general the i, j entry is ai_j-depending only on the difference i - j, which is 
fixed down each diagonal. Thus A is a "convolution matrix." It is symmetric 
when ak = a_ k • 

These matrices (or matrices that are nearly Toeplitz) arise practically every­
where. In time series or signal processing they depend on stationarity; in 
difference equations the coefficients need to be constant; a wide range of 
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problems are invariant in time and in space. All the requirements of Fourier 
analysis are satisfied, except one. The only flaw is that the matrix is finite. It 
starts and ends, and the presence of those boundaries adds a little zest to an 
otherwise important but unexciting problem. 

The continuous counterpart is a differential equation with constant coeffi­
cients, or a convolution equation f a(t - s )x( s )ds = b( t). On the whole line the 
problem is again straightforward; after Fourier transform, it is ax = h. But if the 
limits of integration are 0 and 1, so that this is a "finite section" of an infinite 
problem, transform methods cannot give such an explicit solution. They are still 
the key, but only in one case do they go through without difficulty. That is the 
periodic case, which corresponds in the discrete problem to a circulant matrix. 

An n by n matrix C is a circulant if it not only has constant entries Ck down 
each diagonal, but also satisfies ck = ck+n. The matrix is Toeplitz, and further­
more the i, j entry depends only on i - j modulo n. Each lower diagonal agrees 
with an upper diagonal, and the distinction between Toeplitz matrices and 
circulants is seen in 

[ 

ao a-I 
a l ao 

A = a l 

a
n
·_

1 

and 

One case is determined by 2n -1 entries (the first row and column), the other by 
n. With symmetry those numbers are nearly halved. A symmetric Toeplitz matrix 
has n degrees of freedom (its first column) and a symmetric circulant has 
[n/2]+1. 

Numerically both A and C are much simpler than typical full matrices. The 
usual choice for Toeplitz systems Ax = b is a direct method based on Levinson's 
algorithm [1]; the operation count grows like n 2 instead of the normal n 3 in 
Gaussian elimination. For circulants, which are identical with discrete convolu­
tions, the FFT enters three times-to find the discrete transforms of the se­
quences C and x and the inverse of their component-by-component product. 
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This is the convolution rule; we mention in [2] that it is exactly a diagonalization 
Cx = FAF-1x by the Fourier matrix containing the eigenvectors that are com­
mon to every circulant. It requires ln log n complex multiplications, an important 
improvement over n 2

• 

It was natural for the FFT ideas to be extended back to the Toeplitz problem. 
It is not a pure convolution, but a multiplication Ax can be quickly achieved. (A 
is completed to a circulant C* of order 2n -1, x is completed to x* by n-1 
zero components, and from the fast convolution C*x* the last n -1 components 
are dropped.) The inversion of a Toeplitz matrix, or the solution of Ax = b, is 
much more delicate. Kailath, Morf, Kung, and others have nevertheless found 
several methods of complexity n log n log log n [3-6]. The mathematics is beauti­
ful. It uses subtle algebraic properties of transforms to produce an exact solution. 
The algorithms are somewhat outside the usual range of numerical linear algebra 
(Bunch has discussed difficulties with stability in SIAM's J ourna! for Scientific 
and Statistical Computing) but they throw new light on central problems of 
constructive classical analysis. 

Our present suggestion is very much within the conventional framework. It is a 
semidirect method that ultimately gives exact answers but should not be carried 
that far. It is the standard preconditioned conjugate gradient method, in which the 
preconditioner is a circulant matrix C. Each cycle of the algorithm [7] includes a 
multiplication by A and a linear system Cz = r. The first cycle therefore uses six 
fast transforms, but afterward the transforms of the sequences a and c are fixed 
and only four transforms enter each later cycle. We report below on some 
encouraging, but extremely preliminary, numerical experiments using MA TLAB. 
The creation and testing of an efficient code will take much longer, but the basic 
ingredients are widely available and we hope it may be useful to propose the idea 
so early. 

Our suggestion for the eigenvalue problem is even more premature. Rayleigh 
quotient iteration is known to have cubic convergence for symmetric problems [8]. 
Its drawback is the cost of solving (A - rkI)xk = bk with a new matrix at each 
step-shifted by the Rayleigh quotient value rk taken from the approximate 
eigenvector at the previous step. An iterative method seems appropriate for those 
shifted systems, instead of repeated LV factorizations. Since a good initialization 
is known we intend to try the method proposed above for linear systems. The 
advantage of Rayleigh iterations over QR and others is that the matrices A - rJ 
remain Toeplitz.t 

It seems natural to contemplate doing many of these operations in parallel, 
and to look at corresponding ideas for singular value decompositions. Iterative 
methods have also an important flexibility, that if A is only close to Toeplitz then 
the main idea continues to apply. Changes in boundary conditions, or variations 
instead of invariance in space or time, make the direct Levinson­
Durbin-Yule-Walker algorithms much more difficult. 

t Furthermore the sequences a and c are shifted by (rk' 0, .... 0), and we stay at four transforms per 
cycle. 
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I am extremely grateful for conversations which encouraged me to hope that 
these proposals are reasonable. George Cybenko recalled the work of Charles 
Rino, who kindly collected several papers written about 1970 on the use of 
circulants in ordinary iterations; a splitting into e and A - e appears in [9]. This 
idea is revived in a preprint of Bitmead and Allen, provided by Tom Kailath, in 
which e is a multiple of the identity. Alberto Grunbaum emphasized the need for 
a new look at the eigenvalue problem (and Cybenko-Van Loan have found a 
Yule-Walker-Newton iteration for the minimal eigenvalue). My conversations 
with Gene Golub and Beresford Parlett were of immense value, as they always 
are. Finally, none of the experiments that follow would have been possible 
without the quick and generous help of Nick Trefethen. 

Report on Preliminary Experiments 

The first question is which circulant to choose as preconditioner. In practical 
applications the main diagonal and its neighbors are often strongly dominant. 
Therefore we copied those diagonals of A into e, and then brought them around 
to complete the circulant. Notice an important consequence: the entries a l = C j 

next to the main diagonal appear again in the extreme corners of e. They are 
comparatively large, so that the residual A - e interferes with the convergence of 
an iteration based on ordinary splitting. Perhaps for this reason the idea was not 
much used. In conjugate gradients, however, it is not the distance of the iteration 
matrix from the identity (reflected in its norm or its condition number) that 
finally determines its quality. Instead it is the distribution of the eigenvalues. We 
will see that the large corner entries in e do indicate the largest and smallest 
eigenvalues of e-1A, but the other eigenvalues (at least in our happiest examples) 
are clustered very near to one. 

If the Toeplitz matrix A is a finite section of an underlying infinite matrix, 
another choice of ck is the sum La k +jn over diagonals with index k modulo n. 
This assures that e is positive definite when the infinite matrix is. However it 
uses information that lies far beyond the finite section A, and in our chief 
example below (where ak =1/(1 + k» the sum would not converge. In any case 
the positive definiteness of e is tested when the first cycle takes the discrete 
transform of co' C1, .•. , cn-l. That transform gives the eigenvalues in e = FAF-l, 
up to a constant factor n, and triggers a change in e when the eigenvalues are 
not all positive. 

We mention here a common case in differential equations, when A is banded 
and the sum along a typical row is zero. It is only because the diagonals are cut 
off in the corners that A is invertible; the circulant e will be singular! The 
constant vector x = (1,1, ... ,1) will satisfy ex = 0, as it does for the tridiagonal 
second-difference matrix-when inserting -l's in the two corners makes the 
problem periodic. In such a case, with Lak = 0, we use the Fast Sine Transform in 
place of the FFT in constructing the preconditioner. It is no longer a pure 
circulant, but it is equally fast (and nonsingular). 
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We report here on symmetric positive definite experiments. The eigenvalues of 
C-1A govern the convergence of preconditioned conjugate gradients. Therefore 
the first test took a k = 1/(1 + k) in a Toeplitz matrix A of order n = 12, copied 
Ck = a k on the central 13 diagonals of a circulant C, and computed the eigenval-
ues: 

C A C-1A 

0.376 0.590 0.390 0.642 0.707 l.000 
0.413 0.776 0.401 0.769 0.957 l.026 
0.413 0.776 0.421 0.959 0.958 l.028 
0.443 l.568 0.451 l.282 0.973 l.041 
0.443 1.568 0.494 l.868 0.974 l.047 
0.590 4.043 0.556 3.765 l.000 l.880 

The last column shows ten eigenvalues that are within 5% of 1, and two that are 
not. Those two can be roughly attributed to the change in the corner entries from 
1/12 in A to 1/2 in C. The extreme eigenvalues of C-1A are the minimum and 
maximum of the Rayleigh quotient r(x) = xTAx/xTCx, and we try the two test 
vectors x = (1,0, ... ,0, ± 1): 

l+-f2 1--f2 
r = -1--1 =.72 and r = -1-1- = 1.83. 

+2 -2 

In other tests, the clustering of eigenvalues near 1 was even more strongly 
pronounced for a k = 1/(1 + k)2 and ak = 2 -k, in which the central diagonals are 
more dominant. For an oscillating sequence like ak = (cosk)j(l + k), with n = 21, 
the eigenvalues of C-1A were .64,.74, .93, ... , l.08, l.45, l.96. 

Now we report on the application of the conjugate gradient method to Ax = b 
with a random b. The symmetric matrix A was of order n = 21, with diagonals 
a k = 1/(1 + k). We computed the Euclidean norm of the residual b - Ax} after 
each cycle, and compared the algorithm without preconditioning (C = I) to the 
preconditioned form. Again the central band of C was copied directly from A, a 
choice we will investigate further. The step by step residuals were 

unconditioned 

.9847377 

.6670332 

.3181377 

.1216105 

.0442341 

.0137891 

.0051327 

.0014339 

.0003798 

.0000708 

.0000194 

.0000032 

precondi tioned 

.2566312 .0000058 

.0890435 .0000001 

.0056921 .000000002 

.0002231 .00000000002 
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For the reader's convenience we reproduce from [7] and [2] the steps of the 
conjugate gradient method preconditioned by a matrix C: 

Solve CZj _ 1 = rj - l 

(except PI = 0) 

This has the effect of working with the symmetric matrix C-l/2AC- 1
/

2
, which is 

near the identity, without finding the square root of C. It converges in n steps of 
exact arithmetic. We started from Xo = 0 and the corresponding residual ro = b­
Axo = b, but a quicker start is often possible. The code separated the first cycle 
from the others, and equivalent forms of the main conjugate gradient cycle are 
frequently used. The algorithm can also run in "transform space." 

Finally we mention that all but the extreme eigenvalues of C-~ were again in 
the interval between .95 and LOS. Asymptotic estimates with increasing n will 
require more analysis, and a good code (for the eigenvalue problem too) demands 
much more work. The possibility exists of a demonstrably fast algorithm but with 
computational complexity dependent on the given problem, as expected for 
iterative in contrast to direct methods. 
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