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Abstract. Kadison characterized the diagonals of projections and observed
the presence of an integer. Arveson later recognized this integer as a Fredholm

index obstruction applicable to any normal operator with finite spectrum coin-

cident with its essential spectrum whose elements are the vertices of a convex
polygon. Recently, in joint work with Kaftal, the author linked the Kadison

integer to essential codimension of projections.

This paper provides an analogous link between Arveson’s obstruction and
essential codimension as well as a new approach to Arveson’s theorem which

also allows for generalization to any finite spectrum normal operator. In fact,

we prove that Arveson’s theorem is a corollary of a trace invariance property
of arbitrary normal operators. An essential ingredient is a formulation of

Arveson’s theorem in terms of diagonalization by a unitary which is a Hilbert–
Schmidt perturbation of the identity.

1. Introduction

A diagonal of a bounded linear operator T ∈ B(H) is a sequence of inner products(
〈Ten, en〉

)
where {en}∞n=1 is an orthonormal basis for the Hilbert space H. In

other words, a diagonal of T is the diagonal of some matrix representation of T
with respect to an orthonormal basis.

In his seminal papers on the Pythagorean Theorem [Kad02a; Kad02b] Kadison
proved the following characterization of diagonals of projections.

Theorem 1.1 (Kadison). A sequence (dn) is the diagonal of a projection P if and
only if it takes values in the unit interval and the quantities

a :=
∑
dn<1/2

dn and b :=
∑
dn≥1/2

(1− dn)

satisfy one of the mutually exclusive conditions

(i) a+ b =∞;
(ii) a+ b <∞ and a− b ∈ Z.

The existence of the integer a − b is not at all obvious and Kadison himself
referred to it as “curious.” Since Kadison’s initial paper, both Arveson [Arv07,
Theorem 3] and Argerami [Arg15, Theorem 4.6] have provided new proofs that
a − b ∈ Z. Recently, the author and Kaftal further clarified this integer in [KL17]
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as the essential codimension between the projection P and a natural diagonal pro-
jection associated to a, b. Essential codimension was developed by Brown, Douglas
and Fillmore in [BDF73, Remark 4.9] (see also Definition 2.1 below) for pairs of
projections whose difference is compact.

Arveson also recognized the Kadison integer as the index of a Fredholm operator
in [Arv07], and referred to it as an “index obstruction” to an arbitrary sequence
with values in the unit interval being a diagonal of a projection. Arveson was
able to extend this index obstruction to any normal operator with finite spectrum
coincident with its essential spectrum whose elements are the vertices of a convex
polygon. In order to state his main theorem, Arveson associated several objects to
a finite set X ⊆ C.

Definition 1.2. For a finite set X ⊆ C, the sequences which accumulate summably
at X are

Lim1(X) :=

{
(dn) ∈ `∞

∣∣∣∣∣
∞∑
n=1

dist(dn, X) <∞

}
.

Definition 1.3. For a set X = {λ1, . . . , λm} ⊆ C, let KX denote the Z-module of
linear combinations over Z of elements of X whose coefficients sum to zero. This
can also be expressed as the free Z-module generated by λ1 − λ2, . . . , λ1 − λm.

Definition 1.4. For a finite set X ⊆ C there is a natural map s : Lim1(X) →
C/KX . For (dn) ∈ Lim1(X), since X is finite there are xn ∈ X for which
|dn − xn| = dist(dn, X), and therefore the series

∑∞
n=1(dn− xn) is absolutely sum-

mable. Arveson proved in [Arv07, Proposition 1] that the coset of this sum in
C/KX is independent of the choices of xn ∈ X, so the map

s(d) :=

∞∑
n=1

(dn − xn) +KX ∈ C/KX

is well-defined. The element s(d) is called the renormalized sum of d.

We reproduce Arveson’s theorem [Arv07, Theorem 4] verbatim for reference.
Here, N (X) denotes the set of normal operators with finite spectrum X coincident
with their essential spectrum.

Theorem 1.5 (Arveson). Let X = {λ1, . . . , λm} be the set of vertices of a convex
polygon P ⊆ C and let d = (d1, d2, . . .) be a sequence of complex numbers satisfying
dn ∈ P for n ≥ 1, together with the summability condition

(1.1)

∞∑
n=1

|f(dn)| <∞,

where f(z) = (z − λ1)(z − λ2) · · · (z − λm). Then d ∈ Lim1(X); and if d is the
diagonal of an operator N ∈ N (X), then s(d) = 0.

The summability condition (1.1) is equivalent to (dn) ∈ Lim1(X) via a routine
analysis argument (see [Arv07, Proposition 2]). Moreover, using the notation of Def-
inition 1.4, s(d) = 0 is equivalent by definition to the existence integers c1, . . . , cm
(which depend on the choices xn ∈ X) whose sum is zero for which

(1.2)

∞∑
n=1

(dn − xn) =

m∑
k=1

ckλk ∈ KX .
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WhenX = {0, 1} = σ(N), N is a projection, and the condition (dn) ∈ Lim1({0, 1})
is equivalent to a + b < ∞, where a, b are defined as in Theorem 1.1. Moreover,
K{0,1} = Z, so that Arveson’s theorem is a generalization of the forward implication
Theorem 1.1(ii) in the situation where P is an infinite and co-infinite projection.

Our focus is to provide a new approach to Arveson’s theorem that, by linking it to
the notion of diagonalization by unitaries which are Hilbert–Schmidt perturbations
of the identity, permits us both to identify the integers ck of (1.2) implicit in the
theorem in terms of essential codimension and to eliminate some of the hypotheses
in the theorem. Our intent is to bring a fresh perspective on two key parts of Arve-
son’s theorem: the quantity

∑∞
n=1(dn−xn) and the condition (dn) ∈ Lim1

(
σ(N)

)
.

We identify the sum
∑∞
n=1(dn − xn) as Tr

(
E(N − N ′)

)
for some diagonal oper-

ator N ′ with σ(N ′) ⊆ σ(N) (Proposition 3.5). Here E : B(H) → A denotes
the canonical trace-preserving conditional expectation onto the atomic masa asso-
ciated to an orthonormal basis; that is, E is the operation of “taking the main
diagonal.” Then we prove that if N is normal and U is a unitary which is a
Hilbert–Schmidt perturbation of the identity, then E(N − UNU∗) is trace-class
and Tr

(
E(N −UNU∗)

)
= 0 (Theorem 3.8). Next, we establish that the condition

(dn) ∈ Lim1
(
σ(N)

)
is equivalent to the diagonalizability of N by a unitary which

is a Hilbert–Schmidt perturbation of the identity (Theorem 4.2). The proof relies
on essential codimension and a geometric lemma (Lemma 4.1) which is similar to
[Arv07, Lemma 1]. This culminates in a generalization of Arveson’s theorem (The-
orem 4.3) proved using techniques involving essential codimension, which allows for
the identification of the integers ck in terms of the essential codimensions of pairs
of spectral projections of N and a diagonal operator N ′. Finally, we show how our
results may be used to derive Arveson’s Theorem 1.5.

2. Essential codimension

A fundamental tool we use throughout is the notion of essential codimension due
to Brown, Douglas and Fillmore [BDF73, Remark 4.9]. It associates an integer to
a pair of projections P,Q whose difference is compact by means of the Fredholm
operator QP : PH → QH.

Definition 2.1. Given a pair of projections P,Q whose difference is compact, the
essential codimension of P in Q, denoted [P : Q], is the integer defined by

[P : Q] :=


TrP − TrQ if TrP,TrQ <∞,

ind(V ∗W )
if Tr(P ) = Tr(Q) =∞, where
W ∗W = V ∗V = I,WW ∗ = P, V V ∗ = Q.

Equivalently, essential codimension maybe be defined as

[P : Q] := ind(QP ), where QP : PH → QH.

Several simple properties of essential codimension which we use are collated here
for reference. Proofs can be found in, for example, [BL12, Proposition 2.2]. Each
property can be derived from standard facts about Fredholm index.

Proposition 2.2. Let P1, P2 and Q1, Q2 each be mutually orthogonal pairs of pro-
jections with the property that Pj − Qj is compact for j = 1, 2. Suppose also that
R1 is a projection for which Q1 −R1 is compact. Then

(i) [P1 : Q1] = −[Q1 : P1]
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(ii) [P1 : Q1] + [P2 : Q2] = [P1 + P2 : Q1 +Q2]
(iii) [P1 : R1] = [P1 : Q1] + [Q1 : R1]

The original result of Brown, Douglas and Fillmore [BDF73, Remark 4.9] char-
acterizes when projections can be conjugated by a unitary which is a compact
perturbation of the identity. More specifically, they proved that there is a unitary
U = I +K with K compact which conjugates P,Q if and only if P −Q is compact
and their essential codimension is zero. The next proposition comes from [KL17,
Proposition 2.7(ii)] and extends the Brown–Douglas–Fillmore result verbatim to
an arbitrary proper operator ideal J , where J is two-sided but not necessarily
norm-closed. Herein, J will always denote a proper operator ideal.

Proposition 2.3. If P,Q are projections and J is a proper operator ideal, then
Q = UPU∗ for some unitary U = I +K with K ∈ J if and only if P −Q ∈ J and
[P : Q] = 0.

The following proposition is a reformulation of [KL17, Proposition 2.8] for the
case when the ideal is the Hilbert–Schmidt class C2. This proposition relates the
Kadison integer to essential codimension in the following manner. If P is a projec-
tion with diagonal (dn) and a, b are as in Theorem 1.1 with a + b < ∞, then, by
choosing Q to be the projection onto span{en | dn ≥ 1/2}, Proposition 2.4 guar-
antees P − Q is Hilbert–Schmidt (a fact which was known to Arveson) and that
a− b = [P : Q].

Proposition 2.4. Suppose P,Q are projections. Then P − Q is Hilbert–Schmidt
if and only if in some (equivalently, every) orthonormal basis {en}∞n=1 which diag-
onalizes Q, the diagonal (dn) of P satisfies a+ b <∞, where

a :=
∑

en∈Q⊥H

dn = Tr(Q⊥PQ⊥) and b :=
∑

en∈QH
(1− dn) = Tr(Q−QPQ).

Whenever P −Q is Hilbert–Schmidt, a− b = [P : Q].

3. Restricted diagonalization

It is elementary that finite spectrum normal operators are diagonalizable. How-
ever, one may ask about the possibility of diagonalization relative to a fixed or-
thonormal basis (or atomic masa) by a unitary of the form U = I + K where K
lies in a given proper operator ideal J . For this we use the term restricted diago-
nalization. This concept has been studied by others in the aforementioned paper of
Brown–Douglas–Fillmore [BDF73], as well as by Beltiţa–Patnaik–Weiss [BPW16],
and Hinkkanen [Hin85]. To our knowledge, the term restricted diagonalization was
introduced by Beltiţa–Patnaik–Weiss.

3.1. Conditions for restricted diagonalization. The next result is a corollary
of Propositions 2.3 and 2.4. It describes the conditions under which a projection
experiences restricted diagonalization. In the special case of the Hilbert–Schmidt
ideal, this corollary shows that it suffices to examine the diagonal of the projection.

Corollary 3.1. For a projection P and a proper operator ideal J , the following
are equivalent:

(i) P is diagonalizable by a unitary U = I +K with K ∈ J ;
(ii) there exists a diagonal projection Q for which P −Q ∈ J .
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If J = C2, then these are also equivalent to:

(iii) the diagonal (dn) of P lies in Lim1({0, 1}).

Proof. (i) ⇒ (ii). Suppose that P is diagonalizable by a unitary U = I + K with
K ∈ J . Then setting Q := UPU∗, we have P −Q = −KP − PK∗ −KPK∗ ∈ J .

(ii)⇒ (i). Suppose Q is a diagonal projection for which P−Q ∈ J . By replacing
Q with a diagonal projection Q′ that is a finite perturbation of Q, we can assume
that [P : Q] = 0. Indeed, notice that if [P : Q] < 0, then TrQ ≥ −[P : Q], so
there is a diagonal subprojection Q′ of Q with Tr(Q − Q′) = −[P : Q]. Similarly,
if [P : Q] > 0, then TrQ⊥ ≥ [P : Q], so there is a diagonal subprojection R of
Q⊥ with TrR = [P : Q], and in this case we set Q′ = Q + R. In either case, the
construction guarantees [P : Q] = −[Q : Q′], and hence by Proposition 2.2(iii),
[P : Q′] = [P : Q] + [Q : Q′] = 0. Therefore by Proposition 2.3, P and Q′ are
conjugated by a unitary U = I + K with K ∈ J , and hence P is diagonalized by
U .

(ii) ⇒ (iii). If P − Q ∈ C2, then by Proposition 2.4, for a, b defined as in that
proposition, a+ b <∞. Equivalently, (dn) ∈ Lim1({0, 1}).

(iii) ⇒ (ii). If the diagonal (dn) of P lies in Lim1({0, 1}), then there are some
choices xn ∈ {0, 1} for which (dn−xn) ∈ `1. Let Q be the diagonal projection onto
the span{en | xn = 1}. Then for a, b as defined in Proposition 2.4, a+ b <∞, and
so P −Q ∈ C2 by that result. �

We will generalize Corollary 3.1 to finite spectrum normal operators. The equiv-
alence (i) ⇔ (ii) is generalized by Theorem 3.4, and (i) ⇔ (iii) by Theorem 4.2.

Proposition 2.3 can be bootstrapped by induction to characterize when a pair of
finite collections of mutually orthogonal projections can be simultaneously conju-
gated by a unitary U = I +K with K ∈ J .

Lemma 3.2. Suppose {Pk}mk=1, {Qk}mk=1 are each finite sets of mutually orthogonal
projections, and J is a proper operator ideal. Then there is some unitary U = I+K
with K ∈ J for which Qk = UPkU

∗ for 1 ≤ k ≤ m if and only if Pk −Qk ∈ J and
[Pk : Qk] = 0 for all 1 ≤ k ≤ m.

Proof. One direction is straightforward. Namely, if there exists a unitary U = I+K
with K ∈ J for which Qk = UPkU

∗ for all 1 ≤ k ≤ m, then by Proposition 2.3
Pk −Qk ∈ J and [Pk : Qk] = 0.

For the other direction, we use induction on m, and the base case m = 1 follows
from Proposition 2.3. Let m ∈ N and suppose that if {Pk}mk=1, {Qk}mk=1 are each
sets of mutually orthogonal projections and satisfy Pk−Qk ∈ J and [Pk : Qk] = 0,
then there is a single unitary U = I +K with K ∈ J which conjugates Pk into Qk,
i.e., Qk = UPkU

∗.
Now suppose we have two sets of m+ 1 mutually orthogonal projections satisfy-

ing these conditions. By Proposition 2.3 there is a unitary V = I +K with K ∈ J
for which Qm+1 = V Pm+1V

∗. Moreover, for 1 ≤ k ≤ m, P ′k := V PkV
∗ satisfies

Pk−P ′k ∈ J and [Pk : P ′k] = 0. Therefore P ′k−Qk ∈ J and [P ′k : Qk] = 0 by Proposi-
tion 2.2(iii). Applying the inductive hypothesis to the collections {P ′k}mk=1, {Qk}mk=1

on the Hilbert space Q⊥m+1H yields a unitary W = Q⊥m+1 + K ′ acting on Q⊥m+1H
with K ′ ∈ J , and which conjugates P ′k into Qk for 1 ≤ k ≤ m. Extending this to
the unitary Qm+1 ⊕W acting on H and setting U = (Qm+1 ⊕W )V , we find that
U is of the desired form and UPkU

∗ = Qk for 1 ≤ k ≤ m+ 1. �
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The following lemma weakens the sufficient condition of Lemma 3.2 so long as
we are allowed to perturb the diagonal projections.

Lemma 3.3. Suppose that {Pk}mk=1, {Qk}mk=1 are each collections of mutually or-
thogonal projections for which Pk − Qk ∈ J and

∑m
k=1[Pk : Qk] = 0. Then for

every atomic masa A containing {Qk}mk=1, there exist mutually orthogonal projec-
tions {Q′k}mk=1 ⊆ A for which Pk −Q′k ∈ J and [Pk : Q′k] = 0.

Proof. Suppose {Qk}mk=1 lies in an atomic masa. Note that such a masa always
exists since this is a finite collection of mutually orthogonal (hence commuting)
projections. The argument is by induction on m. When m = 1, the claim is trivial.

Now suppose m > 1. Either [Pk : Qk] = 0 for all k already, or there are two
indices 1 ≤ i, j ≤ m with [Pi : Qi] < 0 < [Pj : Qj ]. Notice that TrQi ≥ −[Pi : Qi].
Let Q be a diagonal subprojection of Qi with TrQ = min{−[Pi : Qi], [Pj : Qj ]}.
Then we replace Qi with Qi − Q and Qj with Qj + Q. By construction, either[
Pi : (Qi − Q)

]
= 0 or

[
Pj : (Qj + Q)

]
= 0. So now we have n − 1 pairs of

projections for which the sum of the essential codimensions is zero. By induction
we can actually force them all to be zero while maintaining the condition that the
Q′k projections are diagonal. �

Theorem 3.4. Suppose J is a proper operator ideal. A finite spectrum normal
operator is diagonalizable by a unitary U = I +K with K ∈ J if and only if each
spectral projection differs from a diagonal projection by an element of J .

Proof. Let N =
∑m
k=1 λkPk be a finite spectrum normal operator with spectral

projections Pk associated to the eigenvalues λk. One direction is trivial, namely,
if N is diagonalizable by a unitary U = I + K with K ∈ J , then the projections
Qk := UPkU

∗ are diagonal and Pk −Qk ∈ J .
For the other direction, suppose that for each Pk there is a diagonal projection

Qk for which Pk − Qk ∈ J . The operators QjQk are projections because Qj , Qk
are commuting projections. Then since PjPk = δjkPj , for j 6= k we obtain

QjQk =
(
Pj + (Qj − Pj)

)(
Pk + (Qk − Pk)

)
= (Qj − Pj)Pk + Pj(Qk − Pk) + (Qj − Pj)(Qk − Pk) ∈ J .

(3.1)

Therefore QjQk are finite projections when j 6= k.
Now let Q′1 := Q1 and inductively define Q′j = Qj − Qj(Q′1 + · · · + Q′j−1) for

1 < j < m and finally Q′m = I − (Q′1 + · · ·+Q′m−1). It is clear that for 1 ≤ j < m,
Q′j is in the algebra generated by {Q1, . . . , Qj} and is therefore diagonal. Moreover,
for 1 ≤ j < m, by (3.1) and induction Q′j−Qj is finite rank, and hence Pj−Q′j ∈ J .
Thus, Q′m is a J -perturbation of I−(P1+· · ·+Pm−1) = Pm, and hence Pm−Q′m ∈ J
as well. By Proposition 2.2(ii),

m∑
k=1

[Pk : Q′k] =

[
m∑
k=1

Pk :

m∑
k=1

Q′k

]
= [I : I] = 0.

So, by Lemma 3.3, we may assume by passing to a possibly different collection of
diagonal Q′k that, in fact, [Pk : Q′k] = 0 for 1 ≤ k ≤ m. Finally, by Lemma 3.2 there
is a unitary U = I + K with K ∈ J for which Q′k = UPkU

∗ for each 1 ≤ k ≤ m.
Therefore, UNU∗ =

∑m
k=1 λkQ

′
k, which is a diagonal operator. �
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3.2. Consequences of restricted diagonalization. This subsection is moti-
vated by the following observation about the condition (dn) ∈ Lim1

(
σ(N)

)
in

Arveson’s theorem.

Proposition 3.5. Let N be a normal operator with finite spectrum and let (dn) be
the diagonal of N . Then (dn) ∈ Lim1

(
σ(N)

)
if and only if there exists a diagonal

operator N ′ = diag(xn) such that spec(N ′) ⊆ σ(N), and E(N −N ′) is trace-class,
in which case

(3.2) Tr
(
E(N −N ′)

)
=

∞∑
n=1

(dn − xn).

Proof. (⇒) Suppose (dn) ∈ Lim1
(
σ(N)

)
. Then there is a sequence (xn) with xn ∈

σ(N) such that (dn−xn) is absolutely summable, and we may take N ′ := diag(xn).
Therefore, since (dn − xn) is absolutely summable,

Tr |E(N −N ′)| =
∞∑
n=1

|dn − xn| <∞,

and hence E(N −N ′) is trace-class.
(⇐) Suppose N ′ is a diagonal operator with σ(N ′) ⊆ σ(N) and E(N − N ′)

trace-class, and let (xn) denote the diagonal of N ′. Then xn ∈ σ(N ′) ⊆ σ(N) and
since E(N −N ′) is trace-class,

∞∑
n=1

|dn − xn| = Tr |E(N −N ′)| <∞.

Therefore (dn − xn) is absolutely summable and hence dn ∈ Lim1
(
σ(N)

)
.

Notice that whenever either of the equivalent conditions is satisfied, we have the
equality

Tr
(
E(N −N ′)

)
=

∞∑
n=1

(dn − xn). �

The remainder of the section is devoted to analyzing the expression E(N −N ′)
when N ′ is a restricted diagonalization of a normal operator N (not necessarily
with finite spectrum), i.e., when N ′ = UNU∗ where U = I + K is unitary and
K ∈ J .

As in [Dyk+04], the arithmetic mean closure J− of an operator ideal J is the set
of operators T whose singular values are weakly majorized by the singular values
of an operator A ∈ J ; that is, if s(T ) denotes the singular value sequence of a
compact operator T ,

J− :=

T ∈ B(H)

∣∣∣∣∣∣∃B ∈ J ,∀n ∈ N,
n∑
j=1

sj(T ) ≤
n∑
j=1

sj(B)

 .

An ideal J is said to be arithmetic mean closed if J = J−. Common examples
of arithmetic mean closed ideals are the Schatten ideals Cp of which the trace-class
ideal C1 and Hilbert–Schmidt ideal C2 are special cases.

In [KW11], Kaftal and Weiss investigated the relationship between an ideal J
and the elements of its image E(J ) under a trace-preserving conditional expectation
onto an atomic masa A, and they established the following characterization [KW11,
Corollary 4.4].
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Corollary 3.6. For every operator ideal J , E(J ) = J− ∩ A.

Our next result says if an operator N can be diagonalized by a unitary U = I+K
with K ∈ J then the diagonals of N and its diagonalization differ by an element
of the arithmetic mean closure of J 2.

Proposition 3.7. Let N be a diagonal operator, J an operator ideal, and U =
I +K a unitary with K ∈ J . Then E(UNU∗ −N) ∈ (J 2)−.

Proof. Irrespective of the condition K ∈ J , note that U = I +K is unitary if and
only if K is normal and K +K∗ = −K∗K because

UU∗ = I +K +K∗ +KK∗

U∗U = I +K +K∗ +K∗K.

Then

E(UNU∗ −N) = E(KN +NK∗ +KNK∗)

= E(KN) + E(NK∗) + E(KNK∗)

= E(K)N +NE(K∗) + E(KNK∗)

= E(K +K∗)N + E(KNK∗) ∈ (J 2)−,

by Corollary 3.6. �

When J = C2, which is the primary concern in this paper, we can say more.

Theorem 3.8. Suppose N is a normal operator. There is an atomic masa such that
for every unitary U = I +K with K Hilbert–Schmidt, E(UNU∗−N) is trace-class
and has trace zero. Moreover, if N is diagonalizable, any atomic masa containing
N suffices.

Proof. Suppose first that N is diagonalizable and consider an atomic masa in which
N lies. Let U = I+K be unitary with K Hilbert–Schmidt. By Proposition 3.7 with
J = C2 and its proof, each term of E(UNU∗ −N) = E(K + K∗)N + E(KNK∗)
is trace-class because K + K∗ = −K∗K and KNK∗ are trace-class, and because
the trace-class is arithmetic mean closed (in fact, it is the smallest arithmetic mean
closed ideal). Then, because the conditional expectation is trace-preserving, we
find

Tr
(
E(KNK∗)

)
= Tr(KNK∗) = Tr(K∗KN)

= −Tr((K +K∗)N) = −Tr(E(K +K∗)N),

and therefore Tr
(
E(UNU∗ −N)

)
= 0.

Now suppose N is an arbitrary normal operator. By Voiculescu’s extension
[Voi79] of the Weyl–von Neumann–Berg theorem we can write N = D+J where D
is diagonalizable and J is Hilbert–Schmidt. Then UJU∗−J = KJ+JK∗+KJK∗

and each term is trace-class. Moreover,

Tr(KJK∗) = Tr(K∗KJ) = −Tr((K +K∗)J)

= −Tr(KJ)− Tr(K∗J) = −Tr(KJ)− Tr(JK∗),

and hence Tr(UJU∗ − J) = 0. Therefore, if E is a conditional expectation onto an
atomic masa containing D, then E(UNU∗ −N) = E(UDU∗ −D) +E(UJU∗ − J)
has trace zero. �
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The previous theorem establishes a kind of trace invariance property for ar-
bitrary normal operators. To see why we use this terminology, consider that a
trace-class operator A has a trace which is invariant under unitary conjugation.
That is, for any unitary U , TrA = Tr(UAU∗). Rearranging, we can write this
as Tr(UAU∗ − A) = 0, and since the canonical expectation is trace-invariant, we
can rewrite this as Tr

(
E(UAU∗ − A)

)
= 0. Under more restrictive hypotheses,

Theorem 3.8 ensures the same condition for normal operators instead of trace-class
operators.

Remark 3.9. The reader may have noticed that the normality in the previous
theorem was only used in order to write the operator as a Hilbert–Schmidt pertur-
bation of a diagonal operator. Therefore, the above theorem remains valid under
this substitution of the hypothesis, and a slightly more general result is obtained.

Example 3.10. One may wonder if in Proposition 3.7 and Theorem 3.8 we may
take any trace-preserving conditional expectation instead of the special ones chosen.
The answer is negative in general as this example shows. Consider commuting
positive operators C, S in B(H) with zero kernel satisfying C2 + S2 = I. Then
consider the operators P,U ∈M2

(
B(H)

) ∼= B(H⊕H)

P :=
1√
2

(
I I
I I

)
U :=

(
C S
−S C

)
,

which are a projection and a unitary, respectively. Thus

UPU∗ =
1√
2

(
I + 2CS C2 − S2

C2 − S2 I − 2CS

)
Now, choose S = diag(sin(θn)) and C = diag(cos(θn)) with (θn) ∈ `2 \ `1. Then
S ∈ C2, C − I ∈ C1 and hence U − (I ⊕ I) ∈ C2. Moreover, 2CS = diag(sin(2θn))
which is Hilbert–Schmidt but not trace-class. Thus, if E is the expectation onto an
atomic masa containing C, S, and Ẽ := E ⊕ E, then Ẽ(UPU∗ − P ) = 1√

2
(2CS ⊕

−2CS) ∈ C2 \ C1.

4. Arveson’s Theorem Revisited

In this section we apply the results concerning restricted diagonalization to prove
a few key facts which will yield a reformulation and extension of Arveson’s theorem
(Theorem 4.3). Our first result in this direction is Theorem 4.2 which characterizes
the condition (dn) ∈ Lim1

(
σ(N)

)
in terms of restricted diagonalization. In order

to prove Theorem 4.2, we use a straightforward geometric lemma which serves a
similar purpose as [Arv07, Lemma 1].

Lemma 4.1. Suppose λ1, . . . , λm ∈ C are distinct and x =
∑m
j=1 cjλj is a convex

combination, and L is a line separating λk from the remaining λj. If x lies on a
line parallel to L separating λk from L, then

m∑
j=1
j 6=k

cj ≤
|x− λk|

dist(λk, L)
.

Proof. Relabel the λj if necessary so that k = 1. By applying a rotation, translation
and scaling (which preserve proportional distances), we may suppose that λ1 = 1
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and L = −a + iR for some a ≥ 0 so that the real part <(x) = 0. Note that
−a ≥ maxj≥2{<(λj)}. Since 0 ∈ [−a, 1] we may write

t(−a) + (1− t)1 = 0, for t =
1

1 + a

Now

0 = <(x) =

m∑
j=1

cj<(λj) ≤

(
m∑
j=2

cj

)
max
j≥2
{<(λj)}+ c1λ1 ≤

(
m∑
j=2

cj

)
(−a) + c11.

Since we have two convex combinations of −a, 1 and the latter is closer to 1 than
the former, the convexity coefficients satisfy

m∑
j=2

cj ≤ t =
1

1 + a
=

dist(<(x), λ1)

dist(λ1, L)
≤ |x− λ1|

dist(λ1, L)
. �

Theorem 4.2. Let N be a normal operator with finite spectrum and diagonal (dn),
and let X be the vertices of the convex hull of its essential spectrum. Then (dn) ∈
Lim1(X) if and only if σess(N) = X and N is diagonalizable by a unitary which is
a Hilbert–Schmidt perturbation of the identity.

Proof. We first reduce to the case when σ(N) = σess(N). Since N is a normal
operator with finite spectrum, by the spectral theorem there is a finite rank per-
turbation N ′ of N for which N ′ is normal and σ(N ′) = σess(N

′) = σess(N). In
particular, if Pλ are the spectral projections of N onto {λ}, and λ′ ∈ σess(N) is a
distinguished element, then we can choose

N ′ := λ′P +
∑

λ∈σess(N)

λPλ, where P =
∑

λ/∈σess(N)

Pλ.

Since N ′ − N is finite rank, the diagonals of N ′ and N differ by an absolutely
summable sequence, so (dn) ∈ Lim1(X) if and only if the diagonal of N ′ is in
Lim1(X). Moreover, the spectral projections of N and N ′ differ from one another
by finite projections. Therefore, the spectral projections of N each differ from a
diagonal projection by a Hilbert–Schmidt operator if and only if the same holds
true for N ′. By Theorem 3.4, N is diagonalizable by a unitary which is a Hilbert–
Schmidt perturbation of the identity if and only if N ′ is as well. Therefore, by the
above reduction, it suffices to prove the theorem with the added assumption that
σ(N) = σess(N).

(Proof of ⇒) Enumerate the elements of σess(N) = σ(N) as λ1, . . . , λm. Let
Pj denote the spectral projection corresponding to the eigenvalue λj , so that
N =

∑m
j=1 λjPj . Let {en}∞n=1 denote the orthonormal basis corresponding to

the diagonal (dn). Suppose (dn) ∈ Lim1(X), and so there exist xn ∈ X for which
(dn − xn) ∈ `1. Let Λk := {n ∈ N | xn = λk} be the index set where the sequence
(xn) takes the value λk ∈ X.

The projections Pj sum to the identity, so for each n ∈ N,
∑m
j=1 〈Pjen, en〉 = 1

and therefore

dn = 〈Nen, en〉 =

m∑
j=1

〈Pjen, en〉λj

is a convex combination of the spectrum.
For λk ∈ X, let Lk be a line separating λk from the remaining elements of

σess(N). Such a line Lk exists because λk is an extreme point of the convex hull of
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σess(N), and this is a finite set. Since (dn) ∈ Lim1(X) we know that (dn−λk)n∈Λk

is absolutely summable for every k. Therefore, for all but finitely many indices
n ∈ Λk, the diagonal entry dn lies on a line parallel to Lk separating λk from Lk
and hence also σess(N) \ {λk}.

By Lemma 4.1, for these indices n ∈ Λk,

(4.1)

m∑
j=1
j 6=k

〈Pjen, en〉 ≤
|dn − λk|

dist(λk, Lk)
.

Since this inequality holds for all but finitely many n ∈ Λk, and dist(λk, Lk) is
independent of n ∈ Λk, and (dn − λk)n∈Λk

is absolutely summable, (4.1) proves(
〈Pjen, en〉

)
n∈Λk

lies in Lim1({0}) = `1 when j 6= k. If λj ∈ σess(N) \ X, by

letting λk run through X, we find
(
〈Pjen, en〉

)
n∈N is absolutely summable since⋃

λk∈X Λk = N. This implies Pj is trace-class and hence a finite projection, contra-

dicting the fact that λj ∈ σess(N). Therefore X = σess(N).
Now consider λj ∈ X = σess(N). In analogy with the previous paragraph, using

the fact that
(
〈Pjen, en〉

)
n∈Λk

∈ `1 when j 6= k and letting λk run through X \ λj ,
we find

(
〈Pjen, en〉

)
n/∈Λj

∈ `1. Finally, for n ∈ Λj ,

1− 〈Pjen, en〉 =

m∑
k=1
k 6=j

〈Pken, en〉,

and hence
(
1 − 〈Pjen, en〉

)
n∈Λk

is a finite sum of absolutely summable sequences,

and is therefore absolutely summable. Thus
(
〈Pjen, en〉

)
n∈Λk

∈ Lim1({1}), so(
〈Pjen, en〉

)
∈ Lim1({0, 1}). Therefore, by Corollary 3.1, Pj differs from a diagonal

projection by a Hilbert–Schmidt operator. Since this is true of all the spectral
projections of N , we may apply Theorem 3.4 to conclude that N is a diagonalizable
by a Hilbert–Schmidt perturbation of the identity.

(Proof of ⇐) This implication is a direct corollary of Theorem 3.8. To see this,
suppose σess(N) = X and N is diagonalizable by a unitary U which is a Hilbert–
Schmidt perturbation of the identity. Thus UNU∗ = diag(xn) for some sequence
xn ∈ σess(N) = X. Then by Theorem 3.8, E(N − UNU∗) is trace-class. That
is, Tr

(
E(N − UNU∗)

)
=
∑∞
n=1(dn − xn) is an absolutely summable series, so

(dn) ∈ Lim1(X). �

We now establish our generalized operator-theoretic reformulation of Arveson’s
Theorem 1.5 by means of Theorem 3.8. After the proof we will explain how to
derive Theorem 1.5 from Theorem 4.3.

Theorem 4.3. Let N be a normal operator with finite spectrum. If N is diagonaliz-
able by a unitary which is a Hilbert–Schmidt perturbation of the identity, then there
is a diagonal operator N ′ with σ(N ′) ⊆ σ(N) for which E(N −N ′) is trace-class,
and for any such N ′, Tr

(
E(N −N ′)

)
∈ Kσ(N). In particular,

(4.2) Tr
(
E(N −N ′)

)
=

∑
λ∈σ(N)

[Pλ : Qλ]λ,

where Pλ, Qλ are the spectral projections onto {λ} of N,N ′ respectively. Moreover,
Pλ −Qλ is Hilbert–Schmidt for each λ ∈ σ(N).
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Proof. Suppose N is normal operator with finite spectrum which is diagonalizable
by a unitary U that is a Hilbert–Schmidt perturbation of the identity. Then by
Theorem 3.8, E(UNU∗−N) is trace-class with trace zero. Moreover, σ(UNU∗) =
σ(N), thereby proving that an N ′ as in the statement exists.

Now, let N ′ be any diagonal operator with σ(N ′) ⊆ σ(N) for which E(N −N ′)
is trace-class. Since N ′ and UNU∗ are diagonal, we find

(4.3) UNU∗ −N ′ = E(UNU∗ −N ′) = E(UNU∗ −N) + E(N −N ′)
is trace-class, diagonal, and has finite spectrum contained in the set of differences
σ(N)− σ(N). Together, these conditions imply this operator is finite rank. More-
over, the (diagonal) spectral projections of UNU∗, N ′, which we denote Rλ, Qλ,
respectively for λ ∈ σ(N), each differ by a finite rank operator. Here we allow for
the case Qλ = 0 when λ ∈ σ(N) \ σ(N ′). This guarantees

[Rλ : Qλ] = Tr(Rλ −Qλ),

using, for example, Proposition 2.4; however, this formula for essential codimen-
sion holds whenever the difference of the projections is trace-class and is widely
known (see for instance [ASS94, Theorem 4.1], [AS94, Theorem 3], or [CP04, Corol-
lary 3.3]).

Therefore,

(4.4) Tr(UNU∗ −N ′) = Tr

 ∑
λ∈σ(N)

(λRλ − λQλ)

 =
∑

λ∈σ(N)

[Rλ : Qλ]λ.

Moreover, we can replace Rλ with Pλ in the right-most side of the above display. In-
deed, since U conjugates Pλ, Rλ, [Pλ : Rλ] = 0 by Proposition 2.3, and furthermore
[Pλ : Qλ] = [Pλ : Rλ] + [Rλ : Qλ] by Proposition 2.2(iii).

Finally, since Tr
(
E(UNU∗ −N)

)
= 0, using (4.3) and (4.4) we find that

Tr
(
E(N −N ′)

)
= Tr(UNU∗ −N ′) =

∑
λ∈σ(N)

[Pλ : Qλ]λ. �

We now illustrate how our results may be used to provide a new proof of Arve-
son’s theorem.

Proof of Theorem 1.5. Let X = {λ1, . . . , λm} and d = (d1, d2, . . .) be as in Theo-
rem 1.5. That is, X is the set of vertices of a convex polygon in C, and d satisfies

∞∑
n=1

|f(dn)| <∞,

where f(z) = (z−λ1)(z−λ2) · · · (z−λm). As we remarked after Theorem 1.5, this
summability condition is equivalent to d ∈ Lim1(X) by [Arv07, Proposition 2]. Now
suppose d is the diagonal of an operator N ∈ N (X) (i.e., N is normal with σ(N) =
σess(N) = X). Then by Theorem 4.2, N is diagonalizable by a unitary U = I +K
with K Hilbert–Schmidt. Therefore, we may apply Theorem 4.3 to conclude that
Tr
(
E(N −N ′)

)
∈ Kσ(N) = KX for some diagonal operator N ′ with σ(N ′) ⊆ σ(N)

and E(N −N ′) is trace-class. Finally, equation (3.2) of Proposition 3.5 establishes
∞∑
n=1

(dn − xn) = Tr
(
E(N −N ′)

)
∈ KX

where (xn) is the diagonal of N ′, so xn ∈ σ(N ′) = σ(N) = X. Hence s(d) = 0. �
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Remark 4.4. In [BJ15], Bownik and Jasper completely characterized the diag-
onals of selfadjoint operators with finite spectrum. A few of the results we have
presented herein are generalizations of [BJ15, Theorem 4.1], which consists of some
necessary conditions for a sequence to be the diagonal of a finite spectrum selfad-
joint operator. In particular, the statement (dn) ∈ Lim1(X) implies X = σess(N)
of our Theorem 4.2 is an extension to finite spectrum normal operators of their
corresponding result [BJ15, Theorem 4.1(ii)] for selfadjoint operators. Similarly,
our formula (4.2) of Theorem 4.3 generalizes [BJ15, Theorem 4.1(iii)].

We conclude with another perspective on the trace Tr
(
E(N − N ′)

)
. Our next

corollary shows that when the Z-module Kσ(N) has full rank (i.e., rankKσ(N) is
one less than the number of elements in the spectrum), this trace is zero if and only
if N ′ is a diagonalization of N by a unitary U = I +K with K Hilbert–Schmidt.

Corollary 4.5. Suppose N is a normal operator with σ(N) = {λ1, . . . , λm} such
that λ1−λ2, . . . , λ1−λm are linearly independent in the Z-module Kσ(N). Suppose
further that N is diagonalizable by a unitary which is a Hilbert–Schmidt perturbation
of the identity. If N ′ is a diagonal operator such that E(N −N ′) is trace-class and
Tr
(
E(N − N ′)

)
= 0, then there is a unitary U = I + K with K Hilbert–Schmidt

such that UNU∗ = N ′.

Proof. By Theorem 4.3, the differences Pk −Qk are Hilbert–Schmidt and

0 = Tr
(
E(N −N ′)

)
=

m∑
k=1

[Pk : Qk]λk

Since
∑m
k=1[Pk : Qk] = 0, we have [P1 : Q1] = −

∑m
k=2[Pk : Qk] and so we may

rearrange the equality above to

0 =

m∑
k=2

[Pk : Qk](λ1 − λk).

Since λ1 − λ2, . . . , λ1 − λm are linearly independent in Kσ(N), we conclude that
the coefficients [Pk : Qk] = 0 for 2 ≤ k ≤ m. In turn, this implies [P1 : Q1] = 0.
Therefore, by Lemma 3.2, there is a unitary U = I + K with K Hilbert–Schmidt
conjugating each Pk to Qk. Thus UNU∗ = N ′. �
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