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Abstract. We investigate the relationship between ideal membership of an

operator and its pieces relative to several canonical types of partitions of the

entries of its matrix representation with respect to a given orthonormal basis.
Our main theorems establish that if T lies in an ideal I, then

∑
PnTPn (or

more generally
∑
QnTPn) lies in the arithmetic mean closure of I whenever

{Pn} (and also {Qn}) is a sequence of mutually orthogonal projections; and in
any basis for which T is a block band matrix, in particular, when in Patnaik–

Petrovic–Weiss universal block tridiagonal form, then all the sub/super/main-

block diagonals of T are in I. And in particular, the principal ideal gen-
erated by this T is the finite sum of the principal ideals generated by each

sub/super/main-block diagonals.

1. Introduction

In the study of infinite matrix representations of operators in B(H), and espe-
cially the structure of commutators, it is common and natural to split up a target
operator T into two (or finite) sum of natural parts. For example, every finite ma-
trix is the sum of its upper triangular part and its lower triangular part (including
the diagonal in either part as you choose).

Formally this obviously holds also for infinite matrices, but not in B(H). That is,
as is well-known, the upper or lower triangular part of a matrix representation for
a bounded operator is not necessarily a bounded operator. The Laurent operator
with zero-diagonal matrix representation ( 1

i−j )i 6=j represents a bounded operator

but its upper and lower triangular parts represent unbounded operators. From this
we can produce a compact operator whose upper triangular part is unbounded.

Example 1. Consider the zero-diagonal Laurent matrix ( 1
i−j )i6=j , which corre-

sponds to the Laurent multiplication operator Mϕ ∈ B(L2(S1)) where

ϕ(z) :=
∑

06=n∈Z

zn

n
=

∞∑

n=1

zn

n
−
∞∑

n=1

zn

n
= log(1− z)− log(1− z) = log

(
1− z

1− z

)
,

which is bounded since it is the principle logarithm of a unit modulus function,
so ϕ ∈ L∞(S1). On the other hand, the upper triangular part ∆(Mϕ) of Mϕ

corresponds to multiplication by log(1−z) /∈ L∞(S1), and is therefore not a bounded
operator. Additionally, as is well-known, the same boundedness/unboundedness
properties are shared by the corresponding Toeplitz operator Tϕ and its ∆(Tϕ).

Indeed, this follows from the fact that if P ∈ B(L2(S1)) is the projection onto

2020 Mathematics Subject Classification. Primary 47B10, 47L20; Secondary 15A42 47B07.

Key words and phrases. operator ideals, diagonals, arithmetic mean closed, block tridiagonal.
†
Partially supported by Simons Foundation grants 245014 and 63655.

1



2 JIREH LOREAUX AND GARY WEISS
†

the Hardy space H2, then PMϕP and P⊥MϕP
⊥ are unitarily equivalent, and

PMϕP
⊥ = P∆(Mϕ)P⊥ is bounded.

To produce a compact operator whose upper triangular part is unbounded, start
by taking successive corners PnTϕPn where Pn is the projection onto the polynomi-

als of degree at most n. Relative to the orthonormal monomials {zk}nk=0, the matrix
representation for Pn∆(Tϕ)Pn is an upper triangular Toeplitz matrix whose first
row is (0, 1, 1/2, . . . , 1/n). Consider the unit vector q(z) := (z + · · ·+ zn)/

√
n, which

is represented as (0, 1, . . . , 1)∗/
√
n relative to this basis. Then a straightforward

computation produces

‖Pn∆(Tϕ)Pnq‖
2

=
1

n

n−1∑

k=0




n−k∑

j=1

1

j




2

≥ 1

n

n−1∑

k=0

log2(n− k) ≥ log2(n/2)

2
.

Therefore, ‖Pn∆(Tϕ)Pn‖ → ∞.
Then set

K :=

∞⊕

n=1

PnTϕPn

‖Pn∆(Tϕ)Pn‖
1/2

, so that ∆(K) =

∞⊕

n=1

Pn∆(Tϕ)Pn

‖Pn∆(Tϕ)Pn‖
1/2

.

Notice that K is compact, being a direct sum of finite rank operators whose norms

‖PnTϕPn‖
‖Pn∆(Tϕ)Pn‖

1/2
≤

‖Tϕ‖
‖Pn∆(Tϕ)Pn‖

1/2
→ 0.

Moreover, its upper triangular part ∆(K) is unbounded, being a direct sum of

finite rank operators with norms ‖Pn∆(Tϕ)Pn‖
1/2

approaching infinity. Similarly,
the operator

K ′ :=

∞⊕

n=1

PnTϕPn

‖Pn∆(Tϕ)Pn‖

is compact, but its upper triangular part ∆(K ′) is bounded and noncompact.

Focusing attention on B(H) ideals yields a fruitful area of study: for a Hilbert–
Schmidt operator, in any basis, any partition of the entries of its matrix represen-
tation has its parts again Hilbert–Schmidt.1 This leads to a natural question for
which the authors are unaware of the answer: is the Hilbert–Schmidt ideal the only
(nonzero) ideal with this property?

For the compact operators K(H), depending on the shape of the matrix parts
for T , the problem of determining when its parts are in K(H) (i.e., ideal invariant)
can be a little subtler. Indeed, as noted in Example 1, the upper triangular part
of a compact operator may not be compact (nay bounded); on the other hand,
it is well-known and elementary that the diagonal sequence (dn) of a compact
operator converges to zero (i.e., diag(dn) is compact), and the same holds for all the
sub/super-diagonals as well. In contrast, this fails for certain matrix representations
for a finite rank operator; that is, the diagonal of a finite rank operator may not be
finite rank (e.g., ( 1

ij )i,j≥1 is rank-1 but its diagonal diag( 1

j
2 ) /∈ F(H)).

1Of course, for any ideal I contained within the Hilbert–Schmidt ideal L2, and any T ∈ I, the

upper triangular part ∆(T ) ∈ L2, but one may wonder if anything stronger can be said. In the

case of the trace-class ideal L1, Gohberg–Krein [GK70, Theorem III.2.1] showed that ∆(T ), in the
terminology of [DFWW04], lies in the arithmetic mean closure of the principal ideal generated by

diag(1/n).
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Here we study this question for general B(H)-ideals: For an ideal I and all pairs
{Pn}, {Qn} of sequences of mutually orthogonal projections, when are the gener-
alized diagonals

∑
QnTPn ∈ I whenever T ∈ I? (The canonical block diagonals

are
∑

Pn+kTPn and
∑

PnTPn+k.) We find this especially pertinent in our cur-
rent search for commutator forms of compact operators [PPW20a], growing out of
[BPW14]; and, in view of the second author’s work with V. Kaftal [KW11] on diag-
onal invariance for ideals, useful in recent discoveries by the second author with S.
Petrovic and S. Patnaik [PPW20b] on their universal finite-block tridiagonalization
for arbitrary B(H) operators and the consequent work on commutators [PPW20a].

Evolution of questions:

(i) For which B(H)-ideals I does a tridiagonal operator T have its three diag-
onal parts also in I? This question arose from the stronger question: for
which tridiagonal operators T ∈ K(H) are the diagonals parts in 〈T 〉? The-
orem 4 guarantees the latter is always true, even for finite band operators.

(ii) The same questions but more generally for a block tridiagonal T (see Defi-
nition 2) and its three block diagonals (see Definition 3). Again, Theorem 4
guarantees this is always true, and likewise for finite block band operators.

That is, if T =

(
B A 0
C
0

)
∈ I, then

(
0 A 0
0
0

)
∈ I, and similarly for

B,C.
(iii) A more general context: given two sequences of (separately) mutually

orthogonal projections, {Pn}
∞
n=1, {Qn}

∞
n=1, for T ∈ I what can be said

about ideal membership for
∑∞

n=1 QnTPn? In Theorem 9 we establish

that
∑∞

n=1 QnTPn always lies in the arithmetic mean closure Iam defined
in [DFWW04] (see herein page 7). This follows from a generalization (see
Theorem 8) of Fan’s famous submajorization theorem [Fan51, Theorem 1]
concerning partial sums of diagonals of operators.

Throughout the paper we will prefer bi-infinite sequences (i.e., indexed by Z
instead of N) of projections, but this is only to make the descriptions simpler;
we will not, however, use the term bi-infinite unless necessary for context. The
projections are allowed to be zero, so this is no restriction. We first establish some
terminology.

Definition 2. A sequence {Pn}n∈Z of mutually orthogonal projections Pn ∈ B(H)
for which

∑
Pn = I is a block decomposition and for T ∈ B(H), partitions it into a

(bi-)infinite matrix of operators Ti,j := PiTPj .
We say that an operator T is a block band operator relative to {Pn} if there is

some M ≥ 0, called the block bandwidth, for which Ti,j = 0 whenever |i− j| > M .
If M = 0 (resp. M = 1), we say T is block diagonal (resp. block tridiagonal) relative
to {Pn}.

Finally, in all the above definitions, if TrPn ≤ 1 for all n ∈ Z, which, up to a
choice of phase for each range vector, simply corresponds to a choice of orthonormal
basis, then we omit the word “block.” In this case, the operators Ti,j are scalars
and (Ti,j) is the matrix representation (again, up to a choice of phase for each
vector) for T relative to this basis.

If {Qn}n∈Z is an (unrelated) block decomposition, the pair {Pn}n∈Z, {Qn}n∈Z
still determines a (bi-)infinite matrix of operators Ti,j = QiTPj , but this time there
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is an inherent asymmetry in that (T ∗)i,j 6= (Tj,i)
∗. In this case, the terms defined

just above may be modified with the adjective “asymmetric.”

Definition 3. Suppose that {Pn}n∈Z is a block decomposition for an operator
T ∈ B(H). For each k ∈ Z, we call

Tk :=
∑

n∈Z
Tn,n+k =

∑

n∈Z
PnTPn+k

the kth block diagonal of T , which converges in the strong operator topology. Vi-
sually, these operators may be described with the following diagram2:




T0 T1 T2 T3

T−1

T−2 T0,0 T0,1 T0,2 T0,3

T−3 T1,0 T1,1 T1,2 T1,3

T2,0 T2,1 T2,2 T2,3

T3,0 T3,1 T3,2 T3,3




We call the collection {Tk}k∈Z the shift decomposition of T (relative to the block
decomposition {Pn}n∈Z). The asymmetric shift decomposition {Tk}k∈Z relative to
different block decompositions {Pn}n∈Z, {Qn}n∈Z is given by

Tk :=
∑

n∈Z
QnTPn+k.

We note for future reference that sums of the above form don’t require the se-
quences of projections to sum to the identity in order to converge in the strong
operator topology, only that each sequence consists of mutually orthogonal projec-
tions. Moreover, it is elementary to show that when T is compact, so is Tk for all
k ∈ Z.

Remark. Although one has the formal equality T =
∑

k∈Z Tk in the sense that T
is uniquely determined by {Tk}k∈Z, this sum doesn’t necessarily converge even in
the weak operator topology [Mer85], hence it doesn’t converge in any of the usual
operator topologies. If rankPn = 1 (and Qn = Pn) for all n ∈ Z then

∑
k∈Z Tk

does converge to T in the Bures topology3 [Bur71, Mer85]. On the other hand, if T
is a block band operator relative to this block decomposition, then convergence is

irrelevant: T =
∑M

k=−M Tk.
The reason for our “shift” terminology in Definition 3 is that if the block de-

composition {Pn}n∈Z consists of rank-1 projections, then the operators Tk have

2For the case when the projections Pn = 0 for n ∈ Z \N, the matrix below is uni-infinite. This

recovers uni-infinite matrix results from the bi-infinite approach we described in the paragraph

preceding Definition 2.
3The Bures topology on B(H) is a locally convex topology constructed from the (rank-1)

projections Pn as follows. Let D =
⊕
n∈Z PnB(H)Pn be the algebra of diagonal matrices and

E : B(H) → D the conditional expectation given by T 7→ T0 :=
∑
n∈Z PnTPn. Then to each

ω ∈ `1 ∼= D∗, associate the seminorm T 7→ Tr(diag(ω)E(T
∗
T )

1/2
), where diag : `∞ → D is the

natural *-isomorphism. These seminorms generate the Bures topology.
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the form Tk = UkDk where Dk are diagonal operators and U is the bilateral shift
relative to any orthonormal basis corresponding to {Pn}n∈Z.

Remark. All compact selfadjoint operators are diagonalizable via the spectral theo-
rem. However, this is certainly not the case for arbitrary selfadjoint operators, the
selfadjoint approximation theorem of Weyl–von Neumann notwithstanding. Nev-
ertheless, every selfadjoint operator with a cyclic vector is tridiagonalizable; for
T = T ∗ with cyclic vector v, apply Gram–Schmidt to the linearly independent
spanning collection {Tnv}∞n=0 and then T is tridiagonal in the resulting orthonor-
mal basis. Consequently, every selfadjoint operator is block diagonal with each
nonzero block in the direct sum itself tridiagonal.

The second author, along with Patnaik and Petrovic [PPW20b, PPW20a], re-
cently established that every bounded operator is block tridiagonalizable, meaning
T = T−1 + T0 + T1, hence block banded (with block bandwidth 1) and with finite
block sizes growing no faster than exponential.

Our first main theorem is an algebraic equality of ideals for block band operators
relative to some block decomposition.

Theorem 4. Let T ∈ B(H) be an asymmetric block band operator of bandwidth M

relative to the block decompositions {Pn}n∈Z, {Qn}n∈Z, and let {Tk}
M
k=−M be the

asymmetric shift decomposition of T . Then the following ideal equality holds:

〈T 〉 =

M∑

k=−M
〈Tk〉.

Proof. The ideal inclusion 〈T 〉 ⊆
∑M

k=−M 〈Tk〉 is obvious since T =
∑M

k=−M Tk.
Therefore it suffices to prove Tk ∈ 〈T 〉 for each −M ≤ k ≤ M . Of course, when
T ∈ B(H) \ K(H), then 〈T 〉 = B(H) and so Tk ∈ 〈T 〉 is trivial. Therefore we only
need to address the case when T ∈ K(H).

The remainder of the proof is essentially due to the following observation: if you
zoom out and squint, then a band matrix looks diagonal. That is, we exploit the
relative thinness of the diagonal strip of support entries.

Indeed, for −M ≤ j, k ≤M define projections Rk,j :=
∑

n∈Z Pn(2M+1)+j+k and
Sj :=

∑
n∈Z Qn(2M+1)+j Then whenever n 6= m, Qn(2M+1)+jTPm(2M+1)+j+k = 0

since the bandwidth of T is M and

|
(
n(2M + 1) + j

)
−
(
m(2M + 1) + j + k

)
| ≥ |n−m|(2M + 1)− k

≥ (2M + 1)−M > M.

Therefore, for each k, j,

SjTRk,j =
∑

n∈Z
Qn(2M+1)+jTPn(2M+1)+j+k

converges in the strong operator topology, and summing over j yields

M∑

j=−M
SjTRk,j =

M∑

j=−M

∑

n∈Z
Qn(2M+1)+jTPn(2M+1)+j+k =

∑

n∈Z
QnTPn+k = Tk.

As a finite sum, the left-hand side is trivially in 〈T 〉 and therefore so is each kth

generalized block diagonal Tk. �
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Before establishing our second main theorem (Theorem 9), we acquaint the
reader with the prerequisite ideas concerning Fan’s theorem [Fan51, Theorem 1],
Hardy–Littlewood submajorization, fundamentals of the theory of operator ideals
and arithmetic mean closed ideals, all of which are intimately related.

For a single operator, Fan’s submajorization theorem [Fan51, Theorem 1] states
that if the matrix representation for a compact operator T ∈ K(H) has diagonal
sequence (dj)j∈J (with any index set J), then

(1)

m∑

n=1

|dn|
∗ ≤

m∑

n=1

sn(T ) for all m ∈ N,

where s(T ) := (sn(T ))n∈N denotes the (monotone) singular value sequence of T ,

and where (|dn|
∗
)n∈N denotes the monotonization4 of the (possibly unordered) se-

quence (|dj |)j∈J ; the monotonization is always an element of the convex cone c∗0
of nonnegative nonincreasing sequences (indexed by N) converging to zero, even
when (|dj |)j∈J is indexed by another set J different from N. The set of inequali-

ties (1) may be encapsulated, for pairs of sequences in c∗0, by saying that (|dn|
∗
) is

submajorized by s(T ), which is often denoted (|dn|
∗
) Î s(T ), although the precise

notation for submajorization varies throughout the literature. If, in addition, the
infinite sums are equal (allowing also for the case∞ =∞), then we say that (|dn|

∗
)

is majorized by s(T ), which is often denoted (|dn|
∗
) ≺ s(T ). We remark the trivial

fact that the submajorization order is finer than the usual pointwise order on c∗0;
that is, (an) ≤ (bn) implies (an) Î (bn) for any (an), (bn) ∈ c∗0.

However, we view Fan’s theorem in a slightly different way which is more amenable
to our purposes. In particular, consider the canonical trace-preserving conditional
expectation5 E : B(H)→ D onto the masa (maximal abelian selfadjoint algebra) of
diagonal operators relative to a fixed, but arbitrary, orthonormal basis. Then the
sequence (|dn|

∗
) is simply s(E(T )), and in this language:

Theorem 5 ([Fan51, Theorem 1]). If T ∈ K(H) and E : B(H)→ D is the canonical
conditional expectation onto a masa of diagonal operators, then

s(E(T )) Î s(T ),

that is, s(E(T )) is submajorized by s(T ).

The submajorization order features prominently in operator theory, but espe-
cially in the theory of diagonals of operators and in the related theory of operator
ideals in B(H).

For the reader’s convenience we briefly review the basics of ideal theory. Let c∗0
denote the convex cone of nonnegative nonincreasing sequences converging to zero.

4This is the measure-theoretic nonincreasing rearrangement relative to the counting measure
on the index set, say J , of (|dn|). Associated to this, there is a injection (not necessarily a

bijection) π : N→ J with d
−1

(C \ {0}) ⊆ π(N) such that |dn|
∗

= |dπ(n)|. This of course requires

0 /∈ (d ◦ π)(N) when d
−1

(C \ {0}) is infinite since (|dn|
∗
) is nonincreasing.

5For an inclusion of unital C*-algebras B ⊆ A (with 1B = 1A), a conditional expectation of A
onto B is a unital positive linear map E : A → B such that E(bab

′
) = bE(a)b

′
for all a ∈ A and

b, b
′ ∈ B. A conditional expectation is called faithful if a ≥ 0 and E(a) = 0 imply a = 0. If A is

a semifinite von Neumann algebra with a faithful normal semifinite trace τ , then the expectation
is said to be trace-preserving if τ(a) = τ(E(a)) for all a ∈ A+.
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To an ideal I, Schatten [Sch70], in a manner quite similar to Calkin [Cal41], as-
sociated the convex subcone Σ(I) := {s(T ) ∈ c∗0 | T ∈ I}, called the characteristic
set of I, which satisfies the properties:

(i) If (an) ≤ (bn) (pointwise) and (bn) ∈ Σ(I), then (an) ∈ Σ(I); that is, Σ(I)
is a hereditary subcone of c∗0 with respect to the usual pointwise ordering.

(ii) If (an) ∈ Σ(I), then (adn2 e) ∈ Σ(I); that is, Σ(I) is closed under 2-
ampliations.

Likewise, if S is a hereditary (with respect to the pointwise order) convex subcone
of c∗0 which is closed under 2-ampliations, then IS := {T ∈ K(H) | s(T ) ∈ S} is an
ideal of B(H). Finally, the maps S 7→ IS and I 7→ Σ(I) are inclusion-preserving
inverses between the classes of B(H)-ideals and characteristic subsets of c∗0.

Ideals whose characteristic sets are also hereditary subcones with respect to the
submajorization order (i.e., B ∈ I and s(A) Î s(B) implies A ∈ I) were introduced
by Dykema, Figiel, Weiss and Wodzicki6 in [DFWW04] and are said to be arithmetic
mean closed7 (abbreviated as am-closed). Given an ideal I, the smallest am-closed

ideal containing I is called the am-closure, denoted Iam, and its characteristic set
consists simply of the hereditary closure (with respect to the submajorization order)
of Σ(I). That is,

Σ
(
Iam

)
=
{

(an) ∈ c∗0
∣∣ ∃(bn) ∈ Σ(I), (an) Î (bn)

}
.

In general, ideals are not am-closed. Indeed, the sequence (1, 0, 0, . . .) cor-
responding to a rank-1 projection P submajorizes any (nonnegative) sequence
(an) whose sum is at most 1. Consequently, if T ∈ L1, the trace class, then
s(T ) Î s(Tr(|T |)P ). Therefore, since any ideal I contains the finite rank opera-
tors, if it is am-closed it must also contain the trace class L1. Additionally, it is
immediate that L1 is am-closed, making it the minimum am-closed ideal.

6The description given [DFWW04] is not in terms of the submajorization order, but these
two definitions are easily shown to be equivalent. Instead, for an ideal I, [DFWW04] defines the

arithmetic mean ideal Ia and pre-arithmetic mean ideal aI whose characteristic sets are given by

Σ(Ia) :=

{
(an) ∈ c∗0

∣∣∣∣∣ ∃(bn) ∈ Σ(I), an ≤
1

n

n∑
k=1

bk

}

Σ(aI) :=

{
(an) ∈ c∗0

∣∣∣∣∣ ∃(bn) ∈ Σ(I),
1

n

n∑
k=1

ak ≤ bn

}
Then the arithmetic mean closure of I is Iam := a(Ia), and I is called am-closed if I = Iam. This

viewpoint also allows one to define the arithmetic mean interior (aI)a, and one always has the
inclusions aI ⊆ (aI)a ⊆ I ⊆ a(Ia) ⊆ Ia.

7Although am-closed ideals were introduced in this generality by [DFWW04], they had been

studied at least as early as [GK69, Rus69], but only in the context of symmetrically normed ideals.
In the study of symmetrically normed ideals by Gohberg and Krein [GK69], they only considered

those which were already am-closed, but they did not have any terminology associated to this
concept.

Around the same time, both Mityagin [Mit64] and Russu [Rus69] concerned themselves with
the existence of so-called intermediate symmetrically normed ideals, which are necessarily not
am-closed, or in the language of Russu, do not possess the majorant property. In [Rus69], Russu

also established that the majorant property is equivalent to the interpolation property studied by

Mityagin [Mit65] and Calderón [Cal66].
In the modern theory of symmetrically normed ideals, those which are am-closed (equivalently,

have the majorant or interpolation properties), are said to be fully symmetric, but this term also
implies the norm preserves the submajorization order. For more information on fully symmetrically
normed ideals and related topics, we refer the reader to [LSZ13].
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Arithmetic mean closed ideals are important within the lattice of operator ideals
not least for their connection to Fan’s theorem, but also because of the following
sort of converse due to the second author with Kaftal.

Theorem 6 ([KW11, Corollary 4.4 and Theorem 4.5]). For an operator ideal I,
and the canonical conditional expectation E : B(H) → D onto a masa of diagonal
operators,

E(I) = Iam ∩ D.
Consequently, I is am-closed if and only if E(I) ⊆ I.

They used the term diagonal invariance to refer to E(I) ⊆ I, and so I is am-
closed if and only if it is diagonally invariant. The reader should note that the
inclusion E(I) ⊆ Iam ∩ D is a direct consequence of Fan’s theorem, when viewed
through the lens of Theorem 5, so the new content of Theorem 6 lies primarily in
the reverse inclusion.

At this point, we note an important contrapositive consequence of Theorem 4
and Theorem 6, as well as the Schur–Horn theorem for positive compact operators
[KW10, Proposition 6.4 and Proposition 6.6].

Corollary 7. Let E : B(H)→ D onto a masa of diagonal operators.

(i) If I ( Iam, then E(I) \ I is non-empty, and any operator in this set is not
a band operator with respect to the basis corresponding D.

(ii) If T is a positive compact operator for which 〈T 〉 ( 〈T 〉
am
, then there is

some unitary U for which E(UTU∗) /∈ 〈T 〉, and consequently UTU∗ is not
a band operator with respect to the basis corresponding to D.

Proof.

(i) That E(I) is nonempty follows immediately from Theorem 6. Then take
any E(T ) ∈ E(I)\I. Since T ∈ I, E(T ) /∈ 〈T 〉, and so by the contrapositive
of Theorem 4 (note E(T ) = T0), T is not a band operator with respect to
the basis corresponding to D.

(ii) It suffices to prove the contrapositive, namely, if E(UTU∗) ∈ 〈T 〉 for all
unitary operators U , then 〈T 〉 is am-closed; indeed, then the portion of (ii)

after “consequently” follows from (i). Take any sequence (an) ∈ Σ(〈T 〉
am

).
Then there is a sequence (bn) ∈ Σ(〈T 〉) with (an) Î (bn). Moreover, there
is some c > 0 and some m ∈ N such that (bn) ≤ cDm(s(T )), where Dm

denotes the m-ampliation operator (i.e., Dm(sn) = (sd n
m e)). Therefore,

(an) Î (bn) ≤ cDm(s(T )) Î (cm)s(T ).

Then by [KW11, Theorem 3.4]8 there is some intermediate sequence (dn)
for which

1

cm
(an) ≤ (dn) ≺ s(T ).

Then, by the Schur–Horn theorem for positive compact operators [KW10,
Proposition 6.4 and Proposition 6.6], there is some unitary operator U such
that s(E(UTU∗)) = (dn). By hypothesis, E(UTU∗) ∈ 〈T 〉 and hence
(dn) ∈ Σ(〈T 〉). Therefore, 1

cm (an) ∈ Σ(〈T 〉) and so (an) ∈ Σ(〈T 〉). Hence

Σ(〈T 〉
am

) ⊆ Σ(〈T 〉) and thus 〈T 〉 = 〈T 〉
am

is am-closed. �

8reader be aware: the notation differs slightly
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The next theorem, due originally to Gohberg–Krein [GK69, Theorems II.5.1 and
III.4.2], bootstraps Theorem 5 to apply to conditional expectations onto block diag-
onal algebras instead of simply diagonal masas. We include this more modern proof
both for completeness and to make the statement accord with that of Theorem 5.

Theorem 8. Let P = {Pn}n∈Z be a block decomposition and consider the associated
conditional expectation EP : B(H) →

⊕
n∈Z PnB(H)Pn defined by EP(T ) := T0 =∑

n∈Z PnTPn. If T ∈ K(H), then s(EP(T )) is submajorized by s(T ), i.e.,

s(EP(T )) Î s(T ).

Moreover, if T ∈ I, then EP(T ) ∈ Iam. In addition, if s(EP(T )) = s(T ), then
EP(T ) = T .

Proof. Suppose thatD is a diagonal masa contained in the algebra
⊕

n∈Z PnB(H)Pn,
and let E : B(H)→ D be the associated canonical trace-preserving conditional ex-
pectation. Because of the algebra inclusions, we see that E ◦ EP = E.

Let T ∈ K(H) and consider EP(T ). By applying the Schmidt decomposition to
each PnTPn one obtains partial isometries Un, Vn (the latter may even be chosen
unitary) in PnB(H)Pn so that UnPnTPnVn is a positive operator in D. Then
U :=

⊕
n∈Z Un, V :=

⊕
n∈Z Vn are partial isometries for which s((E(UEP(T )V )) =

s(EP(T )). Then since U, V ∈
⊕

n∈Z PnB(H)Pn they commute with the conditional
expectation EP and hence

s(EP(T )) = s((E(UEP(T )V )) = s(E(EP(UTV ))) = s(E(UTV )).

By Fan’s theorem (Theorem 5), s(E(UTV )) Î s(UTV ) ≤ ‖U‖s(T )‖V ‖ = s(T ),
and therefore s(EP(T )) Î s(T ). Finally, this fact along with the definition of the

arithmetic mean closure guarantees T ∈ I implies EP(T ) ∈ Iam.
For the case of equality, now suppose that s(EP(T )) = s(T ). By diagonal-

izing each block of EP(T )∗EP(T ) independently, let {en}n∈N be its orthonormal
sequence of eigenvectors, each of which is in one of the subspaces PjH, satisfying

EP(T )∗EP(T )en = sn(T )2en. Then the projections Qn onto span{e1, . . . , en} com-
mute with each Pj , and hence also with the expectation EP . We note for later
reference that

(2) ‖EP(T )Q⊥n ‖
2

= ‖Q⊥nEP(T )∗EP(T )Q⊥n ‖ ≤ sn+1(EP(T ))2.

Observe that for any operator X, because PjX
∗PjXPj ≤ PjX

∗XPj

(3) EP(X)∗EP(X) =
∑

j∈Z
PjX

∗PjXPj ≤
∑

j∈Z
PjX

∗XPj = EP(X∗X),

with equality if and only if PjX
∗P⊥j XPj = 0 for all j ∈ Z if and only if P⊥j XPj = 0

for all j ∈ Z if and only if X = EP(X).
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Applying (3) to X = TQn,

n∑

j=1

sj(EP(T ))2 = Tr(QnEP(T )∗EP(T )Qn)

= Tr(EP(TQn)∗EP(TQn))

≤ Tr(EP(QnT
∗TQn))

= Tr(QnT
∗TQn) ≤

n∑

j=1

sj(T )2,

where the last inequality follows from Theorem 5. We must have equality through-
out since s(EP(T )) = s(T ). Consequently, TQn = EP(TQn) = EP(T )Qn for all
n ∈ N by the equality case of (3).

By (2) and EP(T ) ∈ K(H), ‖EP(T )Q⊥n ‖ → 0 as n→∞, but we also claim

(4) ‖TQ⊥n ‖ ≤ sn+1(T ).

Suppose not. Then we could find some unit vector x ∈ Q⊥nH with 〈T ∗Tx, x〉 =

‖Tx‖2 > sn+1(T )2, and therefore, for the projection R = Qn + (x⊗ x),

Tr(RT ∗TR) = Tr(QnT
∗TQn) + 〈T ∗Tx, x〉 >

n+1∑

j=1

sj(T )2,

contradicting the fact that, because R is a projection of rank n + 1, by Theorem 5

Tr(RT ∗TR) ≤
n+1∑

j=1

sj(RT ∗TR) ≤
n+1∑

j=1

sj(T )2.

Finally, again noting that TQn = EP(T )Qn,

0 ≤ ‖T − EP(T )‖ ≤ ‖T − TQn‖+ ‖EP(T )Qn − EP(T )‖ = ‖TQ⊥n ‖+ ‖EP(T )Q⊥n ‖.

Since ‖TQ⊥n ‖ ≤ sn+1(T ) by (4) and ‖EP(T )Q⊥n ‖ ≤ sn+1(EP(T )) by (2), the right-
hand side converges to zero as n → ∞. Therefore, ‖T − EP(T )‖ = 0 and hence
T = EP(T ). �

.

Remark. When T is Hilbert–Schmidt, the proof that s(EP(T )) = s(T ) implies
EP(T ) = T may be shortened considerably. In particular, T ∗T,EP(T )∗EP(T ) are
trace-class with s(T ∗T ) = s(EP(T )∗EP(T )) and so Tr(T ∗T ) = Tr(EP(T )∗EP(T )).
Since the expectation EP(T ) is trace-preserving,

Tr(EP(T ∗T )− EP(T )∗EP(T )) = Tr(EP(T ∗T − EP(T )∗EP(T )))

= Tr(T ∗T − EP(T )∗EP(T )) = 0.

Since EP(T ∗T ) − EP(T )∗EP(T ) is a positive operator by (3) and the trace is
faithful, we must have EP(T ∗T ) = EP(T )∗EP(T ), and hence T = EP(T ) by the
equality case of (3).

Remark. Fan’s theorem (Theorem 5) is a special case of Theorem 8 by selecting the
projections Pn to have rank one, and therefore E = EP . As we need Theorem 5 to
prove Theorem 8, this doesn’t provide an independent proof of Fan’s theorem.
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Our second main theorem says that there is nothing special about the main
diagonal T0: for all k ∈ Z, s(Tk) Î s(T ); Moreover, this holds even for asymmetric
shift decompositions.

Theorem 9. Suppose that {Pn}n∈Z, {Qn}n∈Z are block decompositions and let
T ∈ K(H) with asymmetric shift decomposition {Tk}k∈Z. Then s(Tk) Î s(T ).

Consequently, if T lies in some ideal I, then Tk ∈ I
am

; in particular, Tk ∈ 〈T 〉
am
.

Proof. It suffices to prove the theorem for T0 since Tk is simply T0 relative to the
translated block decomposition pair {Pn+k}n∈Z, {Qn}n∈Z.

Each QnTPn has the polar decomposition QnTPn = Un|QnTPn| where Un is a
partial isometry9 with QnUn = Un = UnPn. Then U :=

∑
n∈Z Un converges in the

strong operator topology since the collections {Pn}n∈Z, {Qn}n∈Z are each mutually
orthogonal and hence also U is a partial isometry. Moreover,

T ∗0 T0 =

(∑

n∈Z
PnT

∗Qn

)(∑

m∈Z
QmTPm

)
=
∑

n∈Z
|QnTPn|

2
.

Since the operators |QnTPn|
2

are orthogonal (i.e., their products are zero), |T0| =
(T ∗0 T0)

1/2 =
∑

n∈Z|QnTPn|. Thus,

EP(U∗T ) =
∑

n∈Z
PnU

∗TPn =
∑

n∈Z

(∑

m∈Z
PnU

∗
mTPn

)

=
∑

n∈Z

(∑

m∈Z
PnPmU∗mQmTPn

)
=
∑

n∈Z
U∗nQnTPn

=
∑

n∈Z
|QnTPn| = |T0|.

Finally, by Theorem 8 and since U∗ is a contraction,

s(T0) = s(|T0|) = s(EP(U∗T )) Î s(U∗T ) ≤ s(T ).

Therefore, if T ∈ I, then T0 ∈ I
am

by definition. �

Remark. In the previous theorem we assumed that {Pn}n∈Z, {Qn}n∈Z were block
decompositions, but the condition that they sum to the identity is not actually nec-
essary, only that the sequences of projections were (separately) mutually orthogo-
nal. Indeed, suppose that {Pn}n∈Z, {Qn}n∈Z are sequences of mutually orthogonal

projections. Set P ′0 := I −
∑

n∈Z Pn, and for n < 0 set P ′n := Pn, while for n > 0,

set P ′n := Pn−1. Define Q′n for n ∈ Z analogously. Then {P ′n}n∈Z and {Q′n}n∈Z are

block decompositions. Let {T ′k}k∈Z denote the asymmetric shift decomposition of
T relative to these block decompositions, and let Tk :=

∑
n∈Z QnTPn+k. Then

s(Tk) ≤ s(T ′k) Î s(T ),

where the submajorization follows from Theorem 9, and the inequality is due to
the fact that s(T ′k) is the “union” (over n) of the singular values of the blocks

9That QnUn = Un = UnPn follows from well-known facts (e.g., see [Dav96, Theorem I.8.1])

when Un is taken to be the canonical unique partial isometry on H mapping ran(|QnTPn|) →
ran(QnTPn) and noting also the range projection of QnTPn is dominated by Qn and the projec-

tion onto ran(|QnTPn|) = ker
⊥

(QnTPn) is dominated by Pn.
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Q′nTP
′
n+k (reordered so as to be monotonic). This union contains the singular

values of QnTPn+k for each n ∈ Z, and hence contains s(Tk). Because of the

monotonic reordering, s(Tk) ≤ s(T ′k). Hence s(Tk) Î s(T ), and so Tk ∈ 〈T 〉
am
.
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