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Abstract—As quantum computers evolve, simulations of quan-
tum programs on classical computers will be essential in vali-
dating quantum algorithms, understanding the effect of system
noise, and designing applications for future quantum computers.
In this paper, we first propose a new multi-GPU programming
methodology called MG-BSP which constructs a virtual BSP
machine on top of modern multi-GPU platforms, and apply
this methodology to build a multi-GPU density matrix quantum
simulator called DM-Sim. We propose a new formulation that
can significantly reduce communication overhead, and show
that this formula transformation can conserve the semantics
despite noise being introduced. We build the tool-chain for the
simulator to run open standard quantum assembly code, execute
synthesized quantum circuits, and perform ultra-deep and large-
scale simulations. We evaluated DM-Sim on several state-of-the-
art multi-GPU platforms including NVIDIA’s Pascal/Volta DGX-
1, DGX-2, and ORNL’s Summit supercomputer. In particular, we
have demonstrated the simulation of one million general gates
in 94 minutes on DGX-2, far deeper circuits than has been
demonstrated in prior works. Our simulator is more than 10x
faster with respect to the corresponding state-vector quantum
simulators on GPUs and other platforms. The DM-Sim simulator
is released at: http://github.com/pnnl/DM-Sim.

I. INTRODUCTION

Despite holding substantial promise, quantum computing
(QC) based on today’s noisy-intermediate-scale-quantum de-
vices (NISQ) [72] is still distant from beating classical super-
computers. One major limitation is the error, particularly the
decoherence of qubits which introduces significant uncertainty
to the quantum states and corrupts the functionality of the
quantum circuit. The stable coherence duration varies across
different QC technologies, from microseconds to seconds with
different error rate [2] and readout fidelity [3]. Consequently,
identifying how the introduced error propagates among qubits
and along the circuit becomes a critical issue for QC research.

Directly inspecting the intermediate states of a physical
quantum computer is, however, infeasible. Due to fundamen-
tal quantum rules, whenever a measurement is applied to
certain qubits, it destroys the superposition state and alters
the computation logic. Consequently, simulating the quantum
circuit (see Figure 1) through classical computers becomes a
necessary approach to unfold the black-box, investigate the
error, and validate the quantum algorithm and hardware in a
more tractable approach. This is particularly the case when
theoretical bounds are inherently imprecise (e.g., Trotter error
bounds for time evolution of a Hamiltonian [8]). Furthermore,
efficient classical simulations can also form the starting point
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Fig. 1: Quantum circuit. The horizontal lines represent qubits. The
blocks along the lines represent gates. Execution is from left to right.

for quantum-inspired algorithms where an algorithm derived
for QC is reversely deployed on a classical computer [59].

A variety of quantum circuit simulators on classical com-
puters have been proposed [1]. However, most of them target
logical qubits in an ideal isolated environment where full
gate fidelity can be asserted, rather than physical qubits in
a practical open environment with unavoidable noise. Since
QC simulation demands huge amount of memory [11], these
simulators often rely on state vector |ψ〉 = ∑2n−1

i=0 αi |i〉 to
conserve the pure quantum states. The transformation by
applying a quantum gate described as an unitary operator
U thus is |ψ〉 → U |ψ〉. However, when noise is introduced,
we have to deal with a mixed state comprising a statistical
ensemble of multiple distinct quantum systems in a density
matrix. In an ensemble, if the M different quantum systems
are in states |ψ j〉 with probability Pj (1 ≤ j ≤ M), the density

matrix can be expressed as ρ = ∑M
j=1 Pj |ψ j〉〈ψ j|. However, Pj

in a real quantum physical system is typically statistical rather
than determinable. Sometimes it is unknown on purpose [9].

There are two fundamental types of quantum gate errors: (i)
Coherent errors conserve the purity of the input state. Instead
of executing U , another unitary operation Ũ is essentially
applied. (ii) Incoherent errors do not conserve the purity of
the input state. As a result, the state transition can only be
described through a density matrix [65], which contains all
information necessary to decide the probability of any out-
come of the circuit in any future measurement. Therefore, to
simulate quantum circuits for NISQ devices lacking quantum
error correction (QEC) support, being able to simulate using
density matrix can be crucial, sometimes inevitable [9], [35].

The major difference between density matrix and state
vector simulation is that: to simulate the same amount of
qubits n, the memory access and occupation, the computation,
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the network data exchange all scale in O(4n) rather than
O(2n), leading to great pressure on the hardware resources
consumption and dramatically expanded simulation time. In
fact, existing work simulates n-qubits density-matrix through
2n-qubits state vector [33]. Due to the different simulation pur-
poses, in this work we do not seek to simulate more qubits than
state-of-the-art state-vector simulators [13], [68], [84] through
techniques such as using secondary storage [68], presuming
particular gates [13], and lossy compression [84]. Rather, this
work attempts to tackle three major challenges: (i) Circuit
depth: As a well-known approach, quantum simulators tend
to decompose each multi-qubits gate into a sequence of 1-
qubit or 2-qubits gates [4], [6], [7], [15], [22]–[24], [26],
[27], [34], the actual circuit for useful quantum algorithms
can be extremely deep, such as quantum chemistry simulation
(e.g., 1014 gates [73], 1018 gates [65]), quantum approximate
optimization algorithm (QAOA) [17], and quantum neural
networks [18]. This is exacerbated when hardware constraints
are taken into consideration [51]. However, existing simulators
often simulate from a single gate to a few hundreds of
gates [15], [22], [24], [26], [34], [68]. (ii) Performance:
Due to the large problem size, density matrix simulation
can be remarkably slow. This condition can be even worse
with very deep circuits and the fact that simulations are
often repeated many times to, for example, obtain converged
distribution sampling, study the influence of hyper-parameters
and noise, and train a quantum machine learning model, etc.
(iii) Programming flexibility: Although the major target is to
support arbitrary density matrices for error study, defining new
gates with advanced optimization should be straightforward. In
other words, the simulator should ensure the programmability
of the quantum gates while conserving execution efficiency.

Due to massive fine-grained parallelism, intensive double-
precision compute, scarce memory bandwidth demand and ex-
haustive inter-processor communication, state-of-the-art multi-
GPU HPC systems become the ideal platforms for density ma-
trix quantum simulation, particularly concerning GPUs’ mas-
sive lightweight parallel threads, excellent double-precision
floating-point capability, high-bandwidth device memory (e.g.,
HBM, GDDR) and high-speed interconnect (e.g., NVLink1 ).

However, designing an efficient multi-GPU density matrix
quantum circuit simulator still remains challenging because (I)
A programming methodology on how to manage the massive
threads for efficient inner-GPU computation and inter-GPU
cooperation is still missing. This may partially explains why
all existing density-matrix quantum simulators (and most state
vector simulators) are using a single GPU [4], [6], [7], [22]–
[24], [27], [33], [34], [76]; (II) Per-gate global communica-
tion and synchronization. Unlike state vector gate operation
|ψ〉 → U |ψ〉, applying density matrix gate ρ → UρU† de-
mands adjoint operation U† = (U∗)T , which involves global
transposition, implying all-to-all data exchange which can in-
cur tremendous communication overhead. Additionally, global
synchronization is required per gate due to data dependency

1In this paper, we use NVIDIA and CUDA terminology for convenience
as our platforms are NVIDIA GPUs. However, the proposed techniques can
be applied to other vendors’ GPUs as well.

while the processing of a single gate is in a streaming manner
with rare data reuse. Traditionally, GPUs lack whole-device
inter-thread-block synchronization mechanism and GPU-side-
initiated communication mechanism. As a result, existing
designs tend to simulate one gate per GPU kernel followed by
CPU-side communication or synchronization, introducing con-
siderable overhead from repeated kernel invocation & release
[22] (GPU kernel start latency can be as long as 20μs [36]),
and frequent CPU-GPU execution transition. This overhead
is further amplified with multi-GPUs and multi-nodes; (III)
Interconnect. Despite this being the first simulator using multi-
GPUs for density matrix simulation, an existing work has
already applied multi-GPUs for state vector simulation [86].
However, it did not leverage the recent advancement in GPU
interconnect, partially due to the CPU-centric programming
model where all GPUs are managed by a master CPU and data
exchange is only between CPU and GPUs; (IV) Optimization.
Traditional simulators tend to precisely reflect particular QC
technology parameters [66], rather than formulating the pro-
cess from an efficient simulation angle, leading to redundant
computation and communication.

In this paper, we propose a new programming methodology
called MG-BSP that constructs a virtual Bulk-Synchronous-
Parallel machine on top of modern multi-GPU platforms. We
demonstrate its programmability and efficiency by applying
it to the density matrix quantum circuit simulation problem,
and evaluate the performance on several multi-GPU platforms,
including NVIDIA DGX-1 [61], DGX-2 [63] and ORNL
Summit HPC. The results demonstrate the effectiveness, flex-
ibility and scalability of MG-BSP and the DM-Sim simulator.
Particularly, we show that a 15-qubit density matrix simulation
(i.e., the same scale as a 30-qubit state vector simulation) with
1 million arbitrary gates can be accomplished in 94 minutes
(≈5.6 ms/gate) on the NVIDIA DGX-2 system with 16 Volta
V100 GPUs, far deeper and quicker than has been demon-
strated before. In summary, this paper makes the following
contributions:

• We propose a novel multi-GPU programming method-
ology called MG-BSP which constructs a virtual BSP-
machine on top of modern multi-GPU devices. The pro-
gramming model offers good performance, programma-
bility, and portability, which can be further tweaked for
other utilizations and other platforms.

• Based on MG-BSP, we build a density matrix quantum
circuit simulator DM-Sim for multi-GPUs. It fills the
gap of lacking a quantum circuit simulator specially for
density matrix accelerated by multi-GPUs. The simulator
is able to run through the entire quantum circuit using a
single or dual GPU kernel(s), posting significantly bet-
ter performance than corresponding state-of-the-art state
vector simulators. We build the tool-chain for supporting
OpenQASM assembly code in our simulator.

• We propose a new formula transformation approach for
density matrix quantum circuit simulation, which sig-
nificantly reduces the communication overhead for deep
circuits. We show that such a transformation conserves
the semantics of error with noisy quantum gates.



II. VIRTUAL BSP MACHINE ON MULTI-GPU

A. MG-BSP Programming Methodology

This new Multi-GPU programming model is labeled MG-
BSP, which originates from the Bulk-Synchronous-Parallel
model [19], [79]. The basic BSP model comprises three parts:
a number of components that can perform computation and
memory functions; a router that delivers messages point-to-
point among components; and a facility for global synchro-
nization among all components. Please refer to [12], [19], [79]
for more details, as the BSP model is classic and well-known.
Regarding multi-GPU scenario, from threads to GPU kernels,
four levels of BSP model can be constructed from bottom up:

• Threads or lanes in a warp can perform computation on
various function units (e.g., scalar units, special function
units, tensor cores), and register access. They communicate
through specific voting instructions (e.g., __ballot(),
__all(), __any()) and register-shuffling. They syn-
chronize through warp level barrier __syncwarp().

• Warps in a thread block can perform computation on
various function units and memory access on various mem-
ory storage (e.g., shared memory, constant memory, global
memory). They communicate through shared memory [49]
or global memory [45] while synchronizing via thread-block
level barrier primitive ”__syncthreads()”.

• Thread Blocks in a GPU kernel can perform computation
or memory operations on different SMs. They communicate
via L2 cache or global memory. Traditionally, GPU lacks
thread block level synchronization mechanism — a new
GPU kernel is usually invoked to enforce an implicit barrier
among thread blocks.

• Thread Grids or GPU kernels perform computation and
memory operations on different GPUs. They communicate
via point-to-point interconnects such as PCI-e, NVLink, and
NVSwitch. They synchronize through barriers from a higher
level context such as OpenMP (GPUs managed by OpenMP
threads) and MPI (GPUs managed by MPI processes).

The MG-BSP model merges the four BSP levels into a single
BSP virtual machine. We view all threads from multi-GPUs
as uniform. They communicate with each other through inter-
GPU point-to-point access in a memory access superstep. They
synchronize through the new global synchronization method
”grid.sync()”. MG-BSP has the following major features:

• Single kernel: throughout the entire application execution,
only one GPU kernel is invoked. In other words, all GPU
functions are fused into a single kernel with the same
configuration. This entirely eliminates the overhead from
repeated kernel invocation, initialization and release.

• Atomic superstep: MG-BSP assumes unavoidable data de-
pendency among supersteps, so each step is independent and
should be executed atomically. This is achieved by probing
a global barrier grid.sync() beneath each superstep.

• GPU-driven: Given the current trends on GPU file-system
[74], RDMA [70] and GPU-initiated communication [71],
it is foreseen that future GPU-based HPC cluster would
potentially connect InfiniBand or other inter-node network
directly to GPUs (rather than via PCIe). In that sense, GPUs

1#include <cooperative_groups.h>
2using namespace cooperative_groups;
3//Define ISA Format Header
4#define ISA_FORMAT_HEADER tid=blockDim.x*blockIdx.x + \
5 threadIdx.x; for(int i=tid;i<Size;i+=blockDim.x*gridDim.x){
6//Define ISA Format Footer
7#define ISA_FORMAT_FOOTER } grid.sync();//Sync per superstep
8//Define a sample MG-BSP instruction
9__inline__ __device__ Instruction_1(X_out, X_in, C_param){

10 ISA_FORMAT_HEADER
11 ...(X_out, X_in);//processing
12 ISA_FORMAT_FOOTER;}
13__device__ Subprogram_1(X_out, X_in){ //Define a subprogram
14 Instruction_2(X1,X_in,C1);
15 Instruction_50(X2,X1,C2);
16 ...}
17__global__ void Program(T* X0){ //Define MG-BSP Program
18 grid_group grid = this_grid();//for global barrier
19 //instr(out, in, param)
20 Instruction_3(X1,X0,C1);//F1 is an instance of f3
21 Instruction_7(X2,X1,C2);//F2 is an instance of f7
22 Instruction_4(X3,X2,C3);//F3 is an instance of f4
23 Instruction_6(X4,X3,C4);//F4 is an instance of f6
24 Instruction_6(X5,X4,C5);//F5 is another instance of f6
25 ...
26 //subprogram blocks
27 Subprogram_6(Xb1, Xb0);//Blk-1
28 Subprogram_9(Xb2, Xb1);//Blk-2
29 Subprogram_1(Xb3, Xb2);//Blk-3
30 ...
31 //other user-defined routines
32 P2P_Communication(X_out, X_in);
33 Compression(X_in);
34 Decompression(X_out);
35 ...}
36//MG-BSP Machine Configuration
37cudaDeviceProp deviceProp; int numBlocksPerSm;
38cudaGetDeviceProperties(&deviceProp, dev);
39cudaOccupancyMaxActiveBlocksPerMultiprocessor(
40 &numBlocksPerSm, simulation, THREADS_PER_BLOCK, 0);
41dim3 gridDim(numBlocksPerSm*deviceProp.multiProcessorCount);
42void* args[]={&X0};
43//Execute the defined Program
44cudaLaunchCooperativeKernel((void*)Program, gridDim,
45 THREADS_PER_BLOCK, args, 0);

Listing 1: MG-BSP Virtual Machine.

are no longer the accelerators managed by CPUs but the
major computing and communication processors of an HPC
cluster. MG-BSP is well-suited for this GPU-centric model.

We label MG-BSP as a virtual machine because it offers
flexible programming abstraction. It consecutively executes a
series of m atomic operators F over the input data X0 through:

Xi =

{
X0 if i = 0

Fi(Xi−1,Ci) Fi ∈ Ω{ f0, · · · fn−1}, 0 < i < m
(1)

Each F is a computation or communication operator executed
in a superstep. Fi is an instance of instruction f j, with 0≤ j < n
and parameter Ci, from the MG-BSP ISA — Ω{ f0, · · · fn−1}
including n instructions. The MG-BSP virtual machine is to
execute a program comprising a sequence of instructions: P =
Fm−1Fm−2 · · ·F0. The user defines the ISA Ω and program P,
while the virtual machine executes P according to Ω.

Listing 1 illustrates our MG-BSP programming skeleton.
The ISA (i.e., Ω) comprises a series of inlined GPU device
functions. A sample is given in Line-9 to 12. Each device
function concretizes a virtual instruction f j. All instructions
are defined under a uniform thread configuration and poten-
tially a uniform accessing pattern over the data stream X .
To enforce uniform thread configuration, we need: (a) the



same dimension and number of threads per thread block (i.e.,
THREADS PER BLOCK in Listing 1). This can be achieved
via thread coarsening [58], [80], [85] or warp consolidation
[40]. Based on our experience, 32, 256, and 1024 are the
most appropriate values. Using 32 is to allocate as many
fine-grained thread blocks as possible to avoid false waiting
at the warp level [40], and potentially benefit from cache
bypassing [50] and warp throttling [41], [46]. 256 is the default
configuration suggested by CUDA Best Practice Guide [62] for
attaining optimal occupancy [44], [48]. 1024 is adopted when
data sharing within a thread block is particularly crucial to
performance, such as sharing a square tile of 32×32 [49].
(b) the same dimension and number of thread blocks per
kernel. This can be achieved using a task model that traverses
the entire thread block space (i.e., all thread blocks of the
kernel) with certain amount of elastic thread blocks that can
just fully leverage all the SM warp slots, known as elastic
kernel [67] or warp delegation [45]. Line 4-5 define the header
to ensure all thread block jobs will be executed. Line 37-41
extract the number of thread blocks that can achieve the best
occupancy under the present THREADS PER BLOCK value.
(3) the same dynamic shared memory allocation per thread
block. This depends on individual algorithm design. Finally,
to ensure data dependency and instruction atomicity, the virtual
machine globally synchronizes at Line 7.

We then discuss the Program (i.e., P), which is defined
as a sequence of instruction calls encapsulated in a global
function (Line 17 in Listing 1). P may include subprogram
blocks for two reasons: (i) Programmability: when P becomes
increasingly complex, we need hierarchical abstraction levels.
The call graph of GPU device functions is eventually handled
by the GPU compiler, which offers an ideal approach to
resolve the abstraction dependency and semantics, as will
be shown later. (ii) Scalability: when P becomes even more
complex, manually generating P is difficult and we have to
rely on automatic assembly tools such as a DSL compiler or a
script generator to synthesis the instruction sequences. When
that happens, the synthesized results can be encapsulated as
subprograms (e.g., Line 13-16). To offer additional flexibility,
these subprograms can be saved as independent ”.cuh” header
files, and later invoked by predefined APIs inside P. Finally,
the programmer can define other helper functions, such as the
multi-GPU communication function, data compression, etc. to
be leveraged and assembled in the program P.

B. MG-BSP Communication Model
So far we have only discussed BSP at the thread and

thread block level of a single GPU. Now we transit to the
multi-GPU and multi-GPU communication interface. In the
past few years, the number of GPUs in a machine increases
from one traditionally, to two in a scalable-link-interface (SLI)
based system, to four in a GPU workstation, to eight in a
DGX-1 system [61], and to 16 in a DGX-2 system [63]. In
the meanwhile, interconnect among GPUs also evolved from
conventional CPU-centric PCI-e tree network, to dual GPU
SLI-bridge, to 3D-hypercube NVLink network in DGX-1, to
all-to-all NVSwitch network in DGX-2. Figure 2 illustrates
the interconnect topology of the five platforms we adopted for
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Fig. 2: Multi-GPU interconnect network topology.

1//Unified memory for sharing among CPU and GPU
2//Semaphores for GPU tell CPU on starting comm
3__device__ __managed__ int start_comm[N_GPUS];
4//Semaphores for CPU tell GPU on finishing comm
5__device__ __managed__ int finish_comm[N_GPUS];
6//GPU-side Communication Instruction
7__device__ Instruction_Comm(...){
8 if (blockIdx.x == 0 && threadIdx.x==0){
9 //signal CPU thread to start P2P comm via GPU network

10 atomicExch(&start_comm[gid],1);
11 //wait for CPU’s finish signal
12 while(atomicExch(&finish_comm[gid],0)!=1); }
13 grid.sync(); } // Other GPU threads to wait thread-0
14//CPU-side P2P Async Communication
15#pragma omp parallel num_threads (n_gpus)
16{
17 int gid=omp_get_thread_num();
18 cudaSetDevice(gid);
19 cudaLaunchCooperativeKernel(...); //launch kernel
20 while (start_comm[gid]==0){}//wait for CPUs’ start signal
21#pragma omp barrier
22 start_comm[gid]=0;//reset
23 //Perofrm P2P communication
24 cudaMemcpyAsync(...);
25#pragma omp barrier //ensure all CPU threads finish
26 finish_comm[gid]=1;//signal GPU on finishing comm
27}

Listing 2: MG-BSP Communication Instruction with OpenMP.

our evaluation (listed in Table II). Note that for DGX-1P and
DGX-1V, we only show GPU-0 to GPU-3. More information
on multi-GPU interconnect can be found in [42].

Regarding the GPU-level BSP, we have each GPU as a
processing component. For inter-GPU communication, there
are several approaches, including traditional CPU forwarding,
GPU peer access [64], unified memory [64], NCCL [60],
NVSHMEM [71], and MPI with GPUDirect RDMA [70].
MG-BSP itself does not impose any preference or restrictions
on a particular approach; the best choice depends on the
communication patterns of the applications. Nevertheless, the
CPU forwarding approach transfers data using CPU as the
router, leaving the new inter-GPU interconnect unused at all.
Besides, based on our tests, the unified memory generally
shows inferior communication efficiency, as will be discussed.
Therefore, for MG-BSP in a single node, we can use peer
access, NCCL or NVSHMEM, depending on the applications.
If the communication has to be initiated from the GPU-side
without aborting the present kernel, NVSHMEM and a method
proposed here are feasible; otherwise, from the CPU side, we
can adopt NCCL for supported collective communication and
peer access for flexible P2P communication. For MG-BSP
among nodes, MPI, NCCL and NVSHMEM are all feasible.

Listing 2 illustrates our proposed approach where inter-GPU
communication can be triggered from the GPU-side based on
peer access. Each GPU is managed by an OpenMP thread. The
synchronization is through the producer-consumer paradigm.
The idea is to allocate spin locks on the unified memory [64]
(e.g., Line 3, 5), where the CPU waits (Line 20) until the



lock has been released from the GPU-side. Then, the GPU
waits at another lock (Line 12) until the CPU finishes the
communication and releases the second lock (Line 22). Note
that the spinning and release operations on the GPU-side has
to be atomic. We have tested several designs, and this seems
to be the only workable approach without incurring deadlocks.

Although Listing 2 runs correctly, the performance is essen-
tially lower than simply terminating the present GPU kernel,
doing the communication on the CPU-side and invoking a new
GPU kernel to continue, which shows ∼6× better performance
than Listing 2 in our tests. This is likely due to (1) GPU
threads barrier in Line 13; (2) CPU threads barrier in Line 21
and 25; (3) repeated atomic access on slow unified memory
in Line 12; and (4) CPU spinning access in Line 20. Within
these, (3) is the major reason, since unified memory relies on
page faulting mechanism to provide system-wide virtual space
between CPUs and multi-GPUs [64].

Regarding multi-nodes scenario, we rely on MPI to manage
the multi-GPUs of different nodes. The communication and
synchronization are through MPI communication and synchro-
nization primitives. When GPUDirect-RDMA [70] is enabled,
no CPU-side buffer or involvement are required. The design
in Listing 2 can be instantly adapted by replacing ”#pragma
omp barrier” with ”MPI_Barrier()”, and performing
MPI communication accordingly under GPUDirect-RDMA.

C. MG-BSP Summary

To summarize, MG-BSP has the following advantages:

• Performance: the performance gains from (i) significantly
reduced GPU function calls with all kernels being fused;
(ii) as the thread hierarchy configurations (including thread
block & grid dimensions and sizes, shared memory usage)
are delegated to the virtual machine, an ideal configuration
best fitting the underlying hardware can be specified by
MG-BSP for always achieving optimal GPU SM occupancy.
(iii) The elastic execution model [67] can trigger advanced
scheduling and optimization opportunities [45], [83].

• Programmability: programmability is granted in that: (i)
domain experts such as quantum physicists do not need to
learn the details about GPU before applying MG-BSP to
build a quantum simulator and attain superior performance;
(ii) the task of finding the best kernel configuration is dele-
gated to MG-BSP; (iii) since the user only provides the ISA
and program, design modification is straightforward. We
also provide methods for automatic program (P) generation.

• Applicability: MG-BSP abstracts the complex multi-GPU
HPC platforms and delegates kernel settings, ensuring good
applicability over different generations of NVIDIA GPUs
and interconnects.

MG-BSP is most beneficial under the following scenarios: (I)
the application can be efficiently executed using a BSP model,
e.g., regular execution with balanced workload per superstep.
(II) data dependency exists per superstep. (III) there is rare
data reuse across supersteps (e.g., streaming access).

MG-BSP is less applicable for (i) irregular execution such as
graph processing, where a task model [81] or an asynchronous
model [10] may obtain better parallelization efficiency; (ii)

sufficient regular on-chip data reuse exist across supersteps,
where tiling may offer better performance than MG-BSP.

III. DENSITY MATRIX QUANTUM CIRCUIT SIMULATION

In this section, we show how the MG-BSP model can be
leveraged for density matrix quantum circuit simulation, bring-
ing desired performance, programmability and applicability.
We discuss the general applicability of MG-BSP in Section V.

A. Problem Definition and Algorithm Design
Recall that the density matrix simulation is to compute ρout

for a n-qubit quantum register, given initial state ρin and m
gate transformations U0,U1, . . . ,Um−1:

ρout =Um−1 · · ·(U1(U0ρinU†
0 )U

†
1 ) · · ·U†

m−1 (2)

where U and ρ are 2n×2n matrices. Each U is a unitary matrix
verifying UU† =U†U = I. I is the identity matrix. U† is the
adjoint of U with U† = (U∗)T .

Given p GPUs, if we directly implement Eq 2, the compu-
tation workload for a single gate (ρ =UρU†) is two complex
matrix-multiplication (size=2n × 2n), which is 2MM×(2n)3

complex mul/MM×6 dp ops/complex mul = 12× 8n double-
precision (DPs) operations in sum up, corresponding to 12m×
8n/p per GPU with m gates. Meanwhile, the memory access
number is (3 matrix read + 3 matrix write)×8ncomplex×16
bytes/complex = (96×8n) bytes for matrix multiplication with-
out data reuse, corresponding to 96m×8n/p bytes per GPU.
Since each gate computation includes an adjoint operation that
transposes a 2n × 2n matrix, given m gates, the total com-
munication volume is 4n complex×16 bytes/complex=4n+2m
bytes, which is tremendous even under a small n and m. The
transposition also brings (1 matrix read + 1 matrix write)×4n

complex ×16 bytes/complex=(32× 4n) bytes of memory ac-
cess. For efficiency, we propose the following transformations
on Eq 2, which has not been reported by any existing works:

ρout =Um−1 · · ·(U1(U0ρinU†
0 )U

†
1 ) · · ·U†

m−1

=Um−1 · · ·U1U0ρinU†
0 U†

1 · · ·U†
m−1

=
(
(ρinU†

0 U†
1 · · ·U†

m−1)
†(Um−1 · · ·U1U0)

†
)†

=
(
(Um−1 · · ·U1U0ρ†

in)(Um−1 · · ·U1U0)
†
)†

So we obtain:

ρout = (Um−1 · · ·U1U0)(Um−1 · · ·U1U0ρ†
in)

† (3)

This is equivalent as we partition every gate operator into two
steps, rather than performing Step-1 and 2 for each gate con-
secutively, we perform Step-1 for all gates at once, transpose
and conjugate, and then perform Step-2 for all gates again on
the adjoint. Since an error E may occur when a particular gate
U is applied, we show that such a transformation can conserve
the semantics even when noise has been introduced. This is
equivalent to showing that E applied on G(ρ) is equivalent to
applying E on the gate operator itself and then applying the
erroneous gate to ρ .

Theorem 1. Let E (ρ) = (∑i Ki)(ρ) be a superoperator rep-
resenting a quantum noise channel where Ki is a particular



Kraus operator, let G be an operator representing a unitary
gate, then E (G(ρ)) = (E (G))(ρ).
Proof.

E (G(ρ)) = (∑
i

Ki)(G(ρ)) //definition of the superoperator

= ∑
i

KiG(ρ)Ki
† //application of the Kraus operators

= ∑
i

KiGρG†Ki
† //application of the gate

= ∑
i
(KiG)ρ(KiG)† //product property of the adjoint operator

= (∑
i
(KiG))(ρ) //application of the Kraus operators

= ((∑
i

Ki)(G))(ρ) //independence of the gate w.r.t. the index

= (E (G))(ρ) //definition of the superoperator

The transformation in Eq 3 brings two fundamental benefits:

• Memory Access: Since Ui is applying to one (or two)
qubit(s) while leaving other qubits unchanged, this is equiva-
lent to applying Ui to the target qubit while applying identity
operation ID to all the remaining qubits. If Ui is applied to
the i-th qubit, U = I ⊗ I ⊗n−i−1times · · ·Ui ⊗ I ⊗i times · · · ⊗ I,
where ”⊗” is the Kronecker product or tensor product.
This implies that for the sub-operation ρ = Uρ , if ρ is
organized in column-major as shown in Figure 3-(A), we
can generate the 2 × 2 matrix of Ui for 1-qubit gate, or
4× 4 matrix of Ui, j for 2-qubit gate directly on the GPU
side (as the operations for other qubits are ID operations)
without transferring a 2n×2n matrix U from the host. More
importantly, we can avoid the memory access of one input
matrix, accounting for 1/3 of the total memory access in
the matrix-product operations. Additionally, by dramatically
reducing the number of adjoint operations, we can avoid
most of the memory access for the adjoint operations.

• Communication: First, the number of adjoint operations
in Eq 3 is reduced from m to 2. If we directly initialize
GPU memory with ρ†

in rather than ρin, only a single adjoint
remains. As such, we reduce communication times by a
factor of m. This brings tremendous performance gain, given
transposition or all-to-all communication is very expensive,
particularly among multi-nodes, as will be seen later. Sec-
ond, if we partition ρ along columns (Figure 3-(A)), all the
computation can be executed locally in a GPU during the
operation (Uρ) — there is no inter-GPU communication
required for processing a gate. This benefit gains from the
co-design of data structure, parallelization strategy, and the
algorithm itself. The row-partition as shown in Figure 3-(B)
is analogous to the proposed equation transformation, but
requires U† for each gate, leading to extra complexity. Tile-
based partition as shown in Figure 3-(C) demands expensive
2D communication and is out of our choice here.

B. Mapping to MP-BSP Machine
The density matrix quantum simulation matches the MG-

BSP programming methodology very well (Section II-C): it
performs regular computation in supersteps, with strict and
unavoidable dependency among the supersteps. Each superstep
represents a gate operation: ρ = (U → ρ).
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Fig. 3: Partition density matrix ρ among 4 GPUs.

TABLE I: Gates natively supported by the simulator.

Gates Meaning Gates Meaning
U3 3 parameter 2 pulse 1-qubit gate TDG conjugate of sqrt(S) gate
U2 2 parameter 1 pulse 1-qubit gate RX X-axis rotation gate
U1 1 parameter 0 pulse 1-qubit gate RY Y-axis rotation gate
CX Controlled-NOT gate RZ Z-axis rotation gate
ID Idle gate or identity gate CZ Controlled phase gate
X Pauli-X bit flip gate CY Controlled Y gate
Y Pauli-Y bit and phase flip gate CH Controlled H gate
Z Pauli-Z phase flip gate CCX Toffoli gate
H Hadamard gate CRZ Controlled RZ rotation gate
S sqrt(Z) phase gate CU1 Controlled phase rotation gate
SDG conjugate of sqrt(Z) gate CU3 Controlled U3 gate
T sqrt(S) phase gate U Arbitrary unitary gate

We first describe the ISA Ω, which is the collection of
all supported quantum gates. To be general, this simulator
is designed to support OpenQASM – the Open Quantum
Assembly language [14]. Consequently, our simulator can
run the quantum assembly code compiled from high-level
quantum programming languages like Qiskit [30], Cirq [21]
and Scaffold [32]. The gates we currently support are the ones
defined in the OpenQASM standard header file ”qelib1.inc”
plus an arbitrary unitary gate U, as listed in Table I.

Algorithm 1 shows the computation of applying a quantum
gate to a density matrix. The c loop in Line 1, which processes
each column of the partition distributed to the current GPU.
The outer loop and inner loop iterate along the elements of a
column. The outer loop increments in a step depending on the
index of the target-qubit for the current operating gate. The
inner loop depends on the outer loop, while its iteration range
is also dictated by the target-qubit q. Nevertheless, the inner
loop iteration step is continuous. The computation pattern
in Line 6-7 is streaming processing: fetching two complex
elements from the density matrix ρ , processing, and writing
back to the same location of the density matrix.

With Algorithm 1, we have three observations: (i) The mem-
ory accesses depend on per-gate target-qubit index. There-
fore, unless performing very sophisticated and time-consuming
dependency analysis, it is very difficult to fuse or pipeline
across gates; (ii) The c loop, outer loop and inner loop are

Algorithm 1 Simulation workload per GPU per gate

Require: gpu id, n gpus, q, n, Ui;
Ensure: ρ =Ui ×ρ , Ui ∈ {U0,U1, · · · ,Um−1};

1: for c = gpu id ∗ 2n

n gpus , . . . , (gpu id +1)∗ 2n

n gpus −1 do
2: for outer = 0; outer < 2n; outer+= 2×2q do
3: for inner = outer; inner < outer+2q; inner++ do
4: V0 = ρ[c][inner];
5: V1 = ρ[c][inner+2q];
6: ρ[c][inner] =U(V0,V1); //applying gate U
7: ρ[c][inner+2q] =U(V0,V1); //applying gate U

8: return ρ



1//Gate ISA format header
2#define OP_HEAD grid_group grid = this_grid(); for(...){ ...
3//Gate ISA format footer
4#define OP_TAIL } grid.sync();
5//Define a Hadamard gate MG-BSP instruction, S2I=1/sqrt(2)
6__device__ __inline__ void H_GATE(double* dm_r, double* dm_i,
7 const unsigned qubit){
8 OP_HEAD;
9 double el0_r=dm_real[pos0]; double el0_i=dm_imag[pos0];

10 double el1_r=dm_real[pos1]; double el1_i=dm_imag[pos1];
11 dm_r[pos0]=S2I*(el0_r+el1_r); dm_i[pos0]=S2I*(el0_i+el1_i);
12 dm_r[pos1]=S2I*(el0_r-el1_r); dm_i[pos1]=S2I*(el0_i-el1_i);
13 OP_TAIL; }

Listing 3: Applying the 1-qubit Hadamard gate.

all independent and parallelizable. Additionally, there is no
reuse for the access to the density matrix in the loop-nest;
each element of c is updated at most once per gate, demon-
strating streaming processing. As will be seen, this kernel
is memory-bandwidth bound. Thus, deriving the maximum
throughput from the device memory is critical to performance.
This is achieved here through memory coalescing from the
way we formulate the loop nest, and sufficient memory-level-
parallelism [41], [48] from high occupancy; (iii) The outer and
inner loops are not fixed but essentially depend on qubit index
q. If we choose to keep them in the GPU kernel function, there
may not be sufficient workload to saturate all the thread-slots,
particularly when n is small. In fact, for Volta GPU, we need
at least 80SM×2048Threads/SM=163,840 threads to saturate
all thread-slots. Alternatively, if we choose to map them onto
particular dimensions of thread-grid or thread-block, it may
hinder kernel fusion. Therefore, we spread out the three loops
through index transformation, and generate the thread-block
job-lists for the elastic thread blocks to process.

An example about the Hadamard gate is shown in Listing 3.
Since all the gates follow the same operating process, the
simulator defines the ISA-format-header and footer, which
are well-optimized. Therefore, to add a new gate, a domain
developer can focus just on the logic of the quantum gate (e.g.,
Line 9-12 in Listing 3) and offload other jobs like optimization
to the simulator framework.

We then define the program P. Figure 1 shows an example
of a quantum circuit graph. The circuit can be described by
a sequence of gate instructions. Listing 4 shows an example
of an 8-bit quantum ripple-carry adder circuit comprising two
4-bit adders built using the instructions from the ISA. As can
be seen, it is very easy for the users to define their own gate
functions (e.g., majority and unmaj circuit in Listing 4), as
well as call them from another gate function. This is because
they are naturally mapped to the MG-BSP subprograms, and
eventually handled by the GPU compiling mechanism.

Finally, we define the communication superstep for the sim-
ulator. The target is to realize the adjoint operation on a 2n×2n

matrix: A† = (A∗)T . Conjugate is easy, but transpose requires
all-to-all communication2 among all GPUs. For instance,
given two GPUs G0 and G1, G0 holds data vector [a0, a1]
while G1 holds [b0, b1], the all-to-all communication conduct

2The all-to-all communication in this paper refers to the specific collec-
tive all-to-all() function equivalent to MPI Alltoall(), rather than the
general meaning of all nodes talk to all nodes.

1__device__ __inline__ void majority(double* dm_real,
2 double* dm_imag, const unsigned a, const unsigned b,
3 const unsigned c) { CX(c, b); CX(c, a); CCX(a, b, c); }
4__device__ __inline__ void unmaj(double* dm_real,
5 double* dm_imag, const unsigned a, const unsigned b,
6 const unsigned c) { CCX(a, b, c); CX(c, a); CX(a, b); }
7__device__ __inline__ void add4(double* dm_real,
8 double* dm_imag, const unsigned a1, ...) {
9 majority(dm_real, dm_imag, cin, b0, a);

10 majority(dm_real, dm_imag, a0, b1, a);
11 majority(dm_real, dm_imag, a1, b2, a);
12 majority(dm_real, dm_imag, a2, b3, a);
13 CX(a3, cout);
14 unmaj(dm_real, dm_imag, a2, b3, a);
15 unmaj(dm_real, dm_imag, a1, b2, a);
16 unmaj(dm_real, dm_imag, a0, b1, a);
17 unmaj(dm_real, dm_imag, cin, b0, a);}
18__device__ __inline__ void circuit(double* dm_real,
19 double* dm_imag) {
20 X(2);//a=00000001
21 X(10);
22 X(16);//b=10111111
23 add4(dm_real,dm_imag, 2,3,4,5,10,11,12,13,0,1);
24 add4(dm_real,dm_imag,6,7,8,9,14,15,16,17,1,0);
25}//Output: 11000000 0

Listing 4: 8-bit quantum ripple-carry adder circuit in 18 qubits.

in-place data-exchange so that after the communication, G0
holds [a0, b0] while G1 holds [a1, b1]. As currently NCCL
does not support this all-to-all() primitive, nor any of the
currently supported five primitives can be easily combined to
achieve the function, we do not adopt NCCL here. Regarding
NVSHMEM, we tried the MPI-based early access version but
did not observe particular performance gain. We will wait for
more detail about this new library until it is officially released.

For the intra-node peer access design, we adopt the sep-
arated kernel strategy — execute the gate sequence once in
a kernel, abort and initiate P2P on the CPU-side for the
adjoint, and then invoke a new kernel to run the gate sequence
again. Note that although our formula reformation reduces the
communication transactions to 1, the communication is still
critical for performance, as will be seen later. To increase the
communication efficiency through larger transfer granularity,
we adopt a packing design to compact scattered data dedi-
cated for the same destination into a larger continuous block.
Figure 4 illustrates this process with 3 qubits among 4 GPUs.
We optimized the packing, unpacking, and trans kernels and
formalized them as the helper instructions (see Section II-A
and Listing 1) of MG-BSP so they can be fused into the unified
global function. Listing 5 shows our design for the all-to-all
function: For intra-node scenario, we initiate N GPUS streams
from each GPU – one stream accounts for a communication
channel to a target GPU peer (i.e. dst in Line 5), and rotatively
form P2P pairs for efficient peer copying. In this way, these
asynchronous streams can overlap with each other (Line 6) and
thus being able to fully leverage the inter-GPU interconnect
such as NVLink and NVSwitch.

C. DM-Simulator Framework and Toolchain
Figure 5 shows our Density-Matrx (DM) simulation frame-

work and toolchain. There are two paths to generate the
quantum circuit file for simulation. One is from the quantum
programming languages, where the code is converted to Open-
QASM assembly (e.g., circuit.qasm) through the frameworks
like Qiskit [30], Cirq [21], ProjectQ [78], ScaffCC [32]. Then,
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Fig. 4: Inter-GPU communication procedure to achieve density matrix adjoint operation. We adopt two stage transpose: (1) Block transpose
via inter-GPU all-to-all() communication. (2) local blockwise transpose in a GPU. The blocks in the same color in (A) are transmitted to
the same target GPU e.g., red-blocks for G0, blue for G1, green for G2, and pepper for G3. We first pack the discrete segments (e.g., 0, 1,
8, 9) together in (B), perform all-to-all() in (C), unpack the block in (D), and conduct blockwise transpose and conjugate gate in (E).

1//Intra-node multi-GPU all-to-all comm after packing
2for (int g = 0; g<N_GPUS; g++){
3 unsigned dst = (dev + g) % (N_GPUS);
4 cudaSafeCall(cudaMemcpyAsync(&recv_buf[dst]
5 [M_GPU*M_GPU*dev], &send_buf[dev][dst*M_GPU*M_GPU],
6 COMM_SIZE, cudaMemcpyDefault, streams[dst])); }
7//Intra-node multi-GPU all-to-all comm with MPI
8MPI_Alltoall(send_buf, COMM_SIZE, MPI_DOUBLE,
9 recv_buf, COMM_SIZE, MPI_DOUBLE, MPI_COMM_WORLD);

Listing 5: Parallel scale-up and scale-out communication

Q programming language Circuit.qasm
Circuit.cuh Simulator.cubin

Quantum
QASM assembly

Native assembly Executable binary
compiler Assembler nvcc

Simulation

Circuit_part1.cuh

Circuit_part_m.cuh

GeneratorCircuitSynthetic generation policy
Partitioner nvcc

nvcc MG-BSP Runtime

Fig. 5: DM-Sim Simulator Framework.

the assembly is further converted to the native assembly that
can be executed by the simulator, through our Assembler,
which basically (i) translates qubits of independent quantum
registers to a unified address space; (ii) recursively maps each
user-defined gate to a corresponding subprogram of the MG-
BSP machine; (iii) invokes internal gates as listed in Table I.
The alternative path is to synthetically generate quantum
circuits through our circuit Generator, following the user-
specified generation policy.

When fusing all gate functions into a single kernel, the
CUDA compiler nvcc will inline all the device functions into
the unified global function. When the number of functions is
larger than 2048, the inline process can take extremely long
time and crashes occasionally. To simulate very deep circuit
(e.g. 1M), we developed a Partitioner tool to partition the long
gate sequence into multiple chunks, each containing 512 or
1024 gates, and encapsulate each chunk into an independent
GPU global function defined in an independent .cuh source
file. These source files can then be simultaneously compiled
by nvcc through multi-processing (e.g., via make -j 32) and
linked into the final executable binary. Figure 5 shows our
tool-chain support for the quantum density matrix simulator.

IV. EVALUATION

A. Experiment Configuration
We evaluate our DM-Sim quantum circuit simulator using

five state-of-the-art multi-GPU platforms: NVIDIA Tesla-P100
DGX-1 (DGX-1P) [61], Tesla-V100 DGX-1 (DGX-1V), Tesla-
V100 DGX-2 [63], RTX-2080 SLI, and ORNL’s Summit

supercomputer, as listed in Table II. Using these platforms, we
cover three GPU generations (Pascal, Volta, and Turing) and
five types of interconnect (i.e., NV-SLI, NVLink-V1, NVLink-
V2, NVSwitch and InfiniBand). The SLI-system contains two
GPUs. Both DGX-1P and DGX-1V contain 8 GPUs. However,
not all of them are directly linked by NVLink. As all-to-all
communication requires all GPUs being directly connected,
we use 4 GPUs (i.e., GPU-0 to 3) in DGX-1P and 1V for the
evaluations. We use CUDA Event for the timing measurement.
The reported values are average of five times’ execution.

Regarding the input quantum circuit (program P), we obtain
via two approaches: (i) the circuit generator takes the number
of qubit n, the number of gates m, and the set of allowable
gate types as inputs. It randomly picks a qubit within [0, n)
and randomly chooses a gate from the set. We rely on Python’s
unitary group function under scipy.stats package to generate
random unitary gate U ; (ii) we rely on the assembler to parse
and translate real quantum routines written in OpenQASM to
the native assembly supported by our simulator. These sample
routines have a fixed number of qubits and gates, which are
obtained from the QASMBench benchmark suite [38].

B. Roofline-Model Analysis
We use the Roofline model [82] to show the performance

bound based on which we can estimate how good performance
we have achieved. For theoretic double-precision computation
bandwidth (FLOPS), memory bandwidth (GB/s), and intercon-
nect bandwidth (GB/s) per GPU, we use the numbers from the
hardware spec-sheet. For the empirical values, we adopt the
Empirical-Roofline-Tool (ETR) [57] to collect the sustainable
DRAM bandwidth and double-precision FLOPS number. For
the interconnect bandwidth, we use the Tartan benchmark suite
[43] to collect the maximum suitable bandwidth. It can be a
bit surprised to watch that the empirical computation FLOPS
collected by ERT for SLI, DGX-1V and DGX-2 are slightly
higher than their theoretic FLOPS, possibly due to runtime
frequency boosting for advanced GPUs, while the theoretic
values are calculated using normal frequency. We draw the
roofline model for the kernel of U-gate in Figure 6, which
theoretically exhibits the largest arithmetic intensity. As can be
seen, the kernel for processing a gate is memory bound across
all platforms, implying that in case we approach the memory
bound, we may have achieved the best attainable performance.

C. Evaluation Results
We first focus on single-node multi-GPU conditions.



TABLE II: Evaluation Platforms. SP/DP stands for single-precision and double precision. Rtm.stands for runtime library version.

Platform CPU Compiler GPU GPU Arch GPUs Interconnect Topology SP/DP GFlops GPU Memory Rtm.
SLI Intel Xeon E5-2680 gcc-4.8.5 RTX-2080 Turing 2 NVLink-SLI Twin 10068/314.6 8GB GDDR6@448GB/s 10.0

P100-DGX-1 Intel Xeon E5-2698 gcc-4.8.4 Tesla-P100 Pascal 8 NVLink-V1 Hypercube 10609/5304 16GB HBM2@732 GB/s 8.0
V100-DGX-1 Intel Xeon E5-2698 gcc-5.4.0 Tesla-V100 Volta(SXM2) 8 NVLink-V2 Hypercube 14899/7450 16GB HBM2@900 GB/s 9.0

DGX-2 Intel Xeon P-8168 gcc-7.3.0 Tesla-V100 Volta(SXM3) 16 NVSwitch All-to-All 15551/7776 32GB HBM2@900 GB/s 9.0
Summit IBM Power-9 xlc-16.1.1 Tesla-V100 Volta(SXM2) 6×4500 NVLink-V2/InfiniBand Island/Fat-tree 14899/7450 16GB HBM2@900 GB/s 9.2

Fig. 6: The Roofline Model. TR BW stands for theoretic memory bandwidth, EP BW stands for empirical memory bandwidth, TR FP
stands for theoretic FLOPS, ER FP stands for empirical FLOPS. ”AI” stands for arithmetic intensity of the U gate.
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Fig. 7: Average milliseconds per gate with respect to the number of gates simulated (n = 14). ”Comm” is short for Communication. ”Comp”
is short for Computation.

TABLE III: Evaluated quantum routines. We use the routines of 17
&18 qubits for scale-out evaluation.

Routine Description Qubits Gates
deutsch Deutsch algorithm with 2 qubits for f (x) = x 5 5
grover Grover amplification repeated twice 3 123
wstate W-state assessment 3 30
iswap Swap the state of qubits 5 9
pea3pi8 Quantum phase estimation algorithm 5 74
qec Repetition code syndrome measurement 5 5
qv5 Quantum volume analysis 5 100

w3test Experiment of W-state 5 10
adder Quantum ripple-carry adder 9/18 139/281
sat Boolean satisfiability problem 10 679
bv Bernstein-Vazirani algorithm 15/17 44/50
cc Counterfeit-coin finding algorithm 15/17 28/30
qft Quantum Fourier transform algorithm 15/17 540/697

Performance with gate: Figure 7 illustrates the simulation
performance (normalized to ms/gate) for randomly generated
circuits with respect to the number of gates (m) under 14-
qubits over the four single-node platforms. We also show the
breakdown of per-GPU computation and inter-GPU commu-
nication. As can be seen, the delay per gate reduces with
more gates until m ≈ 256; after that, the delay keeps steady.
This is true for both communication and computation. The
reason is that the communication delay (blue portion) and
the overhead for data packing, unpacking, and block-wise
transpose (see Figure 4) are amortized with more gates being
simulated. Overall, m= 256 is sufficient to achieve the optimal
performance. With 14 qubits, the best performance is obtained
on DGX-2 with 16 GPUs. The average delay is ∼ 1.4 ms/gate.

Performance with qubits: Figure 8 illustrates the delay-per-
gate with respect to the number of qubits (from 3 to 15) using
256 gates on the four platforms. As can be seen, the delay
keeps steady until certain qubits (i.e., n = 8 for SLI, n = 10

for DGX-1P and DGX-1V, and n = 11 for DGX-2), and then
start to increase exponentially (note the Y-axis is in log scale).
This is because the problem size scales in 4n with qubits n.
Due to log-based Y-axis, the communication appears to take
a much larger portion than expected, but essentially it is very
tiny. Compared among platforms, DGX-2 exhibits the largest
communication overhead due to more GPUs involved.

Performance bounds: To further evaluate the performance,
Figure 9 shows the normalized GPU computation, memory
access, and inter-GPU communication bandwidth per GPU for
the 4 platforms with respect to the number of qubits. We also
draw the empirical bandwidth upper bounds (the dot-line) to
see how good we are. Figure 9-(A) is to compare among three
GPU architectures: Pascal, Volta, and Turing. As can be seen,
DGX-2’s Volta-SXM3 shows the best performance, slightly
better than DGX-1V’s Volta-SXM2. Meanwhile, both Volta
and Pascal are much better than Turing. This is because Turing
is mainly for desktop utilization, the double-precision perfor-
mance is much lower (∼314.6 FLOPS). Overall, the delivered
computation throughput is below the bound. Figure 9-(B) is
to compare with the three types of GPU DRAM: GDDR-6
in RTX-2080, P100-HBM2 in DGX-1P, and V100-HBM2 in
DGX-1V and DGX-2. The figure confirms that the execution
is memory bound and we have already achieved the optimal
performance that can be obtained under this algorithm design.
Figure 9-(C) is to compare among the four types of multi-
GPU interconnect: NV-SLI in the SLI-system, NVLink-V1 in
DGX-1P, and NVLink-V2 in DGX-1V and DGX-2. We almost
touch the interconnect bandwidth bound with 15 qubits.

Performance scaling with GPUs: Figure 10 illustrates the
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Fig. 8: Average milliseconds per gate with respect to the number of qubits simulated (m = 256).

Fig. 9: Computation, memory and communication bandwidth for the DM-Sim simulator with respect to qubits on the four single-node
platforms. We have approached the memory bound, and for interconnect, we also approach the bound except DGX-2.
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Fig. 10: GPU scaling evaluation for our simulation on DGX-2.

TABLE IV: Deep simulation on DGX-2 using 15 qubits.

Gates Comp Comm Sim Comp/gate Comm/gate Sim/gate
10K 53.8s 9.36ms 53.8s 5.377ms 0.936us 5.378ms
100K 558.0s 7.31ms 558.0s 5.58ms 0.073us 5.580ms
1M 5645.5s 7.21ms 5645.5s 5.65ms 0.007us 5.65ms
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Fig. 11: Average delay per gate for basic simulator built-in gate types
on DGX-2 with n=15 qubits and m=256 gates.

average delay per gate with respect to the number of GPUs
adopted in the simulation (GPUs = 2, 4, 8, 16) on DGX-2.
The delay halves each time we double the number of GPUs,
demonstrating strong scaling capability of the simulator.

Deep simulation: We perform extremely deep quantum circuit
tests on DGX-2. Since it takes extremely long time for nvcc
to inline 1-million gate kernels, we rely on the partitioner
tool (see Figure 5) to segment the circuit file into nearly 2000
subprograms, each per 512 gates, and in an independent header
file. We then compile these files in parallel. We increase the
number of gates m from 10K to 100K to 1M. The results
are listed in Table IV. Our simulator is able to accomplish 1
million density matrix quantum gate simulation within 5,645s
or 1.5 hours, on average 5.65 ms/gate, under 15 qubits. Such a
deep simulation has not been reported by existing simulators.

Gate types: For the previous evaluations, we use the circuit

deu
tsc
h
gro
ver

ws
tat
e
isw
ap

pea
3pi
8
qec qv5 w3

tes
t
add
er sat bv cc qft

6

4

2

0

8 2 GPUs 4 GPUs 8 GPUs 16 GPUs

Fig. 12: Strong scaling for quantum routines in Table III on DGX-2.

generator to randomly generate U gates to simulate arbitrary
erroneous gate operations. Now we test each built-in gate type
specifically. Note that some of the built-in gates (i.e., CZ, CY,
CH, CCX, CRZ, CU1, CU3) are composed of other basic gates
(i.e., the remaining gates in Table I). Figure 11 illustrates the
delay per gate for all the basic gates natively defined in the
simulator as well as OpenQASM’s standard header file. As
can be seen, U1, X, Y, H, RX, RY, U exhibit similar delay. ID
gate does not perform any real job, so the delay is nearly zero.
CX shows much less delay because whether CX operation is
applied depends on the value of the control qubit, which may
not necessarily be 1 given random initialization of ρ .

Algorithm Test: Figure 12 illustrates the speedups of using
more GPUs for real quantum routines listed in Table III
on DGX-2. As can be seen, for small-scale circuits with 3-
5 qubits, using multiple GPUs does not bring performance
benefit. On the contrary, for some of the cases (e.g., deutsch,
iswap, qec, qv5, and w3test), the performance even drops with
more GPUs. This is because the computation workload is so
light that the GPU processors are quite underutilized where
latency cannot be effectively hidden. Meanwhile, communica-
tion can take a significant portion of the total simulation time.
Since the communication delay generally increases with more
GPUs involved, we observe such performance degradation.
For medium-scale circuits (e.g., adder), the GPU utilization
is much better, as more gates also help to amortize the com-
munication delay. For large-scale deep circuits, we observe
nearly ideal strong scaling speedups, especially for qft.



Fig. 13: Performance Comparisons with 10 other QC simulators: R1
[34], R2 [6], R3 [4], R4 [16], R5 [76], R6 [23], R7 [22], R8 [7], R9
[77], R10 [33], R11 [86].

Fig. 14: Simulation delay for bv, cc, qft and adder (see Table III).
The number on top of the bars indicate the number of GPUs used
in the simulation. Note each Summit node comprises 6 Volta GPUs
and only 256 GPUs provide enough GPU memory for 18 qubits.

Comparisons: Figure 13 shows the performance (normalized
to ms per gate) comparisons with other quantum simulators.
As the density matrix scales in 4n, 15 qubits density matrix
simulation is equivalent to 30 qubits state vector simulation,
as has been shown by existing works [33]. We normalize
10 referencing simulators’ performance using the performance
merits reported in their papers into two systems (20 and 26
state-vector qubits) for comparison. Our simulator delivers
more than 10× performance advantages than its counterparts,
demonstrating the effectiveness of our simulator design.

Performance scaling out on Summit HPC: To evaluate
our MG-BSP based DM-Sim simulator on multi-node GPU
clusters, we test it on ORNL’s Summit HPC. We use MPI all-
to-all() for the communication (see Listing 5) with GPUDirect
RDMA enabled (smpiargs=”-gpu”). We test 17-qubits bv, cc,
qft and 18-qubits adder (see Table III) using 64, 128, 256,
512, 1024 GPUs on Summit. Figure 14 shows the results.
As can be seen, both the computation and communication
exhibit strong scaling. For the computation, the performance
increases due to increased parallel processing resources. For
the communication, the latency also reduces largely because
GPUs in Summit are connected in a fat-tree topology, more
GPUs implies more local links between GPUs, and therefore
expanded overall network bandwidth for migrating the huge
density matrix. Consequently, we see strong scaling for com-
munication. Meanwhile, we observe that the percentage of
communication is tremendously larger than within a single
node. Also note that this is just for a single adjoint operation,
without the proposed formula transformation (see Eq 3), the
simulation will be completely dominated by communication.
For such large-scale simulations, to amortize the expensive
communication overhead, deep simulation is always preferred.

V. DISCUSSION

In this section, we discuss the application generality and
platform portability of the MG-BSP programming model. In
addition, we further discuss GPU-centric designing paradigm.

A. Application Generality
MG-BSP is a general multi-GPU programming methodol-

ogy that can be applied to many other scenarios in addition to
the DM-Sim simulator, particularly those computation systems
with indivisible or meta operations from a certain operation
set. For example, in a complex sparse numerical solver, the
input tensor has to be processed by a series of sparse linear
algebra operators such as SpMV [56], SpGEMM [53], SpTrsv
[54], [55], etc. Each sparse operator can be defined as an MG-
BSP instruction sharing the same parallelization configuration
with other instructions. The collection of them form the
ISA. The operator sequence in the solver formula becomes
the program provided by the users. Another ideal example
is the training & inference of deep-neural-networks (DNNs)
[37], [47] in high-performance machine learning. Each layer
function, such as convolution, fully-connected, pooling, batch-
normalization, drop-out, etc. can be defined as an MG-BSP
instruction, the user-defined network structure thus is the MG-
BSP program. For both examples and other potential scenarios,
by following the MG-BSP programming methodology, it can
be much easier to manage the synchronization, communica-
tion, and the computation logic, following the classical BSP
model, while expecting superior performance.

B. Platform Portability
Although this work mainly demonstrates the applicability of

the MG-BSP methodology for NVIDIA multi-GPU platforms,
there is no obstacle presenting us from applying the methodol-
ogy to other platforms. Regarding a CPU-cluster such as Theta
in ALCF [29], migrating the MG-BSP based implementations
such as the DM-Sim simulator are uncomplicated. Particularly,
we need to replace the CUDA device functions with OpenMP
annotated nested loops, and possibly accelerated by CPUs’
vector-instructions (e.g. SSE/AVX). Alternatively, for AMD
GPUs, as soon as the corresponding global synchronization
mechanism similar to grid.sync() can be integrated into
the OpenCL or the HIP framework, we can quickly transform
the CUDA-based implementations, such as the present DM-
Sim simulator, to the AMD CPU/GPU based cluster platform,
e.g., the forthcoming ORNL Frontier supercomputer, through
the HIP tool [5]. The strong support of GPU-initiated commu-
nication mechanism [25], [36] can further benefit the efficiency
of the communications in MG-BSP.

C. GPU-centric Designing Paradigm
We envision the forthcoming GPU-centric programming

paradigm could be realized through the following aspects: (a)
Non-interruptive long GPU-centric computation. All the func-
tions of an application should be realized as device functions
and fused into as few kernels as possible to fully leverage the
GPU computation resources. Consequently, we can avoid a lot
of data migration, communication, synchronization, repeated
kernel invocation & release overhead; (b) GPU-centric com-
munication and synchronization. This is a co-design approach:
on the hardware side, following the current trend, the inter-
node network interfaces should be directly connected to the
HBM or NoC of the GPUs rather than a channel of the PCI-
e bus (which is the current practice of Summit); from the



software, GPU should be able to initiate intra- and inter-node
communication transactions without CPU intervention [25],
[36]. Furthermore, GPU device-wide and inter-device syn-
chronization primitives, including global barriers and remote
atomic operations, should be offered and callable from the
GPU-side; (c) GPU-centric memory access. A GPU should be
able to easily access the memory of remote GPUs through
either a shared-memory model or message-passing model
without incurring too much overhead; (d) GPU-centric I/O.
Ideally, GPU can fetch from and store data to various storage
including system memory, on-package memory [39], extended
memory (e.g., Intel Optane memory [31]) and even file-system,
from the GPU-side. Within the four aspects, (a) to (c) are
reflected in the MG-BSP programming model of this work.

VI. RELATED WORK

There exist many simulators for simulating quantum circuits
in a classical computer, as can be found in the zoo [1]. They
have different capabilities, features and restrictions. However,
most of them are based on state vectors [4], [6], [7], [15], [16],
[20], [22]–[24], [27], [28], [34], [75], [77] and are focusing
on logic qubits where full gate fidelity is ensured. For them,
pursuing more qubits is one of the major targets. While state
vector simulations have general-purpose usage, density matrix
simulations are required if mixed-state quantum systems are
to be analyzed, particularly with noise [66]. This is the major
motivation we build a new QC simulator. Additionally, many
existing simulators only simulate from a single gate to a few
hundreds of gates [15], [22], [24], [26], [34], [68]. However,
practical quantum algorithms like variational algorithm [69]
demand ultra-deep circuits with millions of gates (1014 [73],
1018 gates [65]). Besides, with such deep circuits, performance
can be a major challenge. This also motivates us to build the
MG-BSP based DM-Sim simulator.

Classical simulators come in two flavors with respect to
the utilization of the underlying hardware: some simulators
use only CPUs to perform the task [15], [20], [28], [75],
[77], whereas others provide functionality to leverage readily
available heterogeneous resources such as GPUs [4], [6], [7],
[16], [22]–[24], [27], [33], [34], [76]. However, the majority of
these GPU works use a single GPU. At the time of writing the
paper, we are aware of three works leveraging multiple GPUs
for quantum simulation [16], [52], [86]. Zhang et al. [86]
exploited a single node with 4 NVIDIA Kepler K20 GPUs for
state-vector quantum simulation. They proposed well-designed
locality-focused communication schemes. However, the round-
trip communications between the host and each device could
not be avoided for every alternating gate pair consisting a gate
operating on local qubits and one operating on remote qubits,
as they attempted to explore inter-gate data reuse. In addition,
their multi-GPU programming model is the conventional CPU-
centric map-reduce model, where for each iteration, the data
and job have to be distributed from the CPU master to their
GPU slaves. The communication is only between CPU and
GPUs via the PCI-e interconnect. Li and Yuan [52] observed
that the number of GPUs in a node can be limited by PCI-e
and proposed to rely on GPU cluster for state-vector quantum
simulation, while trying to reduce communication frequency

and the amount of communication data by exploiting locality
through a novel data distribution method. They validated their
approach on a cluster with 4 nodes and each node contained 4
NVIDIA Kepler K20 GPUs. More recently, Doi et al. [16]
proposed a state-vector quantum simulator for multi-nodes
multi-GPUs. Their major observation is that a CPU-GPU
hybrid design can leverage the strong compute capability of
GPUs for efficient simulation, while the large system memory
of CPUs for accommodating more qubits. Their strategy was
to first allocate the state-vector on GPU memory, and in case
insufficient, they partitioned the simulation of a gate into
chunks, while carefully managing the chunk communication
and synchronization among CPUs and GPUs. Their testing
platform was analogous to the node of Summit (IBM Power
CPU with 6 NVIDIA Volta V100 GPUs). Their testing ran
up to 32 nodes. All of the three works focused on state-
vector simulation (thus cannot handle mixed-state quantum
systems) and attempted to improve computation or commu-
nication efficiency by exploiting data locality. Their designs
all include repeated GPU kernel invocations with significant
CPU involvement (i.e., CPU-centric). Their evaluations are
performed on a single node or relatively small/medium-scale
GPU clusters. Comparatively, our DM-Sim simulator focuses
on density-matrix simulation and follows the GPU-centric
MG-BSP model with merely one or two GPU kernel calls.
We rely on an algorithm/data-structure co-design approach to
reduce communication and memory access overhead with little
CPU intervention. Our design greatly benefits from the novel
inter-GPU interconnect and GPUDirect-RDMA, demonstrat-
ing strong scaling for both scaling-up (up to 16 GPUs in DGX-
2) and scaling-out (up to 1024 GPUs on Summit) scenarios.

VII. CONCLUSION

In this paper, we propose a novel multi-GPU programming
methodology called MG-BSP, which uniforms the thread con-
figuration and integrates all computation and communication
supersteps into a single GPU kernel for full occupancy and
superior performance. We then apply MG-BSP to build a
density matrix quantum simulator DM-Sim. We propose a
new simulation approach that significantly reduces commu-
nication overhead. Extensive evaluations on five state-of-the-
art multi-GPU platforms demonstrate the efficiency, flexibility
and scalability of our density matrix simulator. We believe
our simulation approach enables effective validation and study
the impact of noise on very deep quantum circuits that are
expected as we move toward quantum computations beyond
the realm of classical computers.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran our DM quantum simulator on five systems: NVIDIA

Pascal DGX-1 (8 P100 GPU connected by NVLink-V1), Volta

DGX-1 (http://images.nvidia.com/content/pdf/dgx1-v100-system-

architecture-whitepaper.pdf, 8 V100 GPU connected NVLink-

V2), Volta DGX-2 (16 V100 GPU connected by NVSwitch), Tur-

ing RTX2080 (two RTX2080 GPU connected by NVSLI), and

ORNL’s Summit supercomputer with cuda/9.2.148 and spectrum-

mpi/10.3.1.2-20200121. We use –smpiargs="-gpu" to enable GPUDi-

rect RDMA. Other information can be found in Table-II of

the paper. The benchmark input quantum circuits are from

https://github.com/Qiskit/openqasm. The Roofline model figures

are drawn using the tool: https://bitbucket.org/berkeleylab/cs-

roofline-toolkit/src/master/. DM-Sim and the artifact are available

in GitHub: https://github.com/pnnl/DM-Sim.

ARTIFACT AVAILABILITY

Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved

license.

Hardware Artifact Availability: All author-created hardware arti-

facts are maintained in a public repository under an OSI-approved

license.

Data Artifact Availability: All author-created data artifacts are

maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-

created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/pnnl/DM-Sim
Artifact name: DM-simulator source code

BASELINE EXPERIMENTAL SETUP, AND

MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: ORNL Summit Cluster; NVIDIA DGX-

1-Pascal; NVIDIA DGX-1-Volta; NVIDIA DGX-2

Operating systems and versions: Linux-rhel7-ppc64le; Linux

dgx-1 4.4.0-116-generic #140-Ubuntu SMP; Linux tonga 4.15.0-38-

generic #41-Ubuntu SMP

Compilers and versions: xl-16.1.1-5; GCC-4.8.5

Libraries and versions: spectrum-mpi-10.3.1.2;

Input datasets and versions: OpenQASM Benchmarks

URL to output from scripts that gathers execution environment

information.

https://github.com/pnnl/DM-Sim/tree/master/artifact


