Caenorhabditis Elegans Connectome

David Shimkus CS 590 - Complex Networks Fall 2022

Background & Motivation

Caenorhabditis elegans (C. elegans)

- Nematode about 1mm in length
- Only organism to have complete "connectome" available

Connectomes

- Full neuron connection mappings in the nervous system
- C. Elegans ~300 neurons total.
 - Flies have ~100 thousand neurons.
 - Mice have ~100 million.
 - Humans have ~100 billion!

Compare Against Generated Networks

- Erdos-Renyi
- Barabasi-Albert

https://bio.unc.edu/faculty-profile/goldstein/

doi:10.1371/journal.pone.0004006

https://www.ncbi.nlm.nih.gov/books/NBK299460/figure/celegansintro_figure2/

Lifespan: ~18-20 days. Birth Cycle: ~3 days

Sexual Dimorphism

XX Hermaphrodite

- 302 neurons
- 8 sex-specific neurons
- More than 99% naturally
- Can birth clones

XO Male

- 385 neurons
- 91 sex-specific neurons
- Increased complexity near spicules for reproduction

http://wormbook.org/chapters/www_somaticsexdeterm/somaticsexdetfig1.jpg

Neurons

- Axons (exit edges) and Dendrites (enter edges)
- "Activated" neurons will send small electrical signals down axons to receiving neurons' dendrites
- Various reactions based in part by dendrite signals determines if a neuron will "activate"

https://www.vecteezy.com/vector-art/358962-diagram-of-neuron-anatomy

Types of Directed, Weighted, Edges

NOTE: Symmetric and Asymmetric variations of Electrical Synapses! https://www.nature.com/articles/nrn3708

Data

	11L	IIR	12L	IZR	13	14	15	16	M1	M2L	M2R	M3L	M3R	M4	M5	MCL	MCR	MI	NSML	NSMR	pm1	pm2D	pm2VL	pm3D	pm3VL	pm3VR	pm4D	pm4VL	pm4VR	pm5D	pm5VL	pm5VR	pm6D	pm6VL	pm6VR	pm7D	pm7VR	mc2DL	mc2DR	mc2V	mc3V	e3D	e3VL	e3VR	g1p	g1AL	g1AR	g2L	g2R	bm	ASIL
I1L			10		3		2	1		3		8	2			2	2	2	3		2				7		1	2																							_
I1R				6	1		2		1	1	3	1	6			3	4	1	1	2	2			2		5	1		2	2		1																			
I2L	2			3		13	2	2	1				3	4					14	24					1			2		1	2	1											1								
I2R		1	3			20	2	3	3		2		2	3		1			34	7	1					1	2	1			1	4												1							
13	1	1					2	1	2	2		2	2	2		1	2	1		2							2			4																					
14				7			2			5		6	22					1	8	15							1				11	2																			
15	2		3	1	1	7			3	4		4	2	19	2			4	1	5											4	14		1												9	6				
16		1	1	4	12							10		15					24	23										13															2					2	
M1		1	3	2	8	1	2							1	1			6	2			1	1		1		1			3												3	1		5						
M2L					2	8	2					3	1														3	9		2	21															8					
M2R						1	3					2	1							1							3		3			12															3				
M3L																			1								17	6		4	2																				
M3R														2													6		1																		3			1	
M4						5	1			1		1		15		1													1	69	50	72													46	43	49	3			
M5							1		1																						1	3	2	2	2	3	2				4					3	1	2	1		
MCL																																							7	13											
MCR																																						6	4	11											
MI	1				2	1			7	3	2	2	2			3			1	2							2	1	7	5																					
NSML						1		1				21	1	13						7								2		38	63	8																		88	
NSMR			1	1		3		4					24														3			9	1	53																	1	72	
ASIL					0.0								1																				1																		

https://www.wormwiring.org/pages/adjacency.html

[SI 5 Connectome adjacency matrices, corrected July 2020.xlsx]

•••

🜠 complete-data — view c-elegans-hermaphrodite-complete.csv — 115×32

1, I1L, I1R, I2L, I2R, I3, I4, I5, I6, M1, M2L, M2R, M3L, M3R, M4, M5, MCL, MCR, MI, NSML, NSMR, pm1, pm2D, pm2VL, pm3D, pm3 , pm4VL, pm4VR, pm5D, pm5VL, pm5VR, pm6D, pm6VL, pm6VR, pm7D, pm7VR, mc2DL, mc2DR, mc2V, mc3V, e3D, e3VL, e3VR, g1p, , g2R, bm, ASIL, ASIR, ASJL, ASJR, AWAL, AWAR, ASGL, ASGR, AWBL, AWBR, ASEL, ASER, ADFL, ADFR, AFDL, AFDR, AWCL, AWCR, L, ASHR, ADLL, ADLR, BAGL, BAGR, URXL, URXR, ALNL, ALNR, PLNL, PLNR, SDQL, SDQR, AQR, PQR, ALML, ALMR, AVM, PVM, PLML, R, DVA, PVDL, PVDR, ADEL, ADER, PDEL, PDER, PHAL, PHAR, PHBL, PHBR, PHCL, PHCR, IL2DL, IL2DR, IL2L, IL2R, IL2VL, IL2V , CEPVL, CEPVR, URYDL, URYDR, URYVL, URYVR, OLLL, OLLR, OLQDL, OLQDR, OLQVL, OLQVR, IL1DL, IL1DR, IL1L, IL1R, IL1VL INR, AIML, AIMR, RIH, URBL, URBR, RIR, AIYL, AIYR, AIAL, AIAR, AUAL, AUAR, AIZL, AIZR, RIS, ALA, PVQL, PVQR, ADAL, ADA DUL, BDUR, PVR, AVFL, AVFR, AVHL, AVHR, PVPL, PVPR, LUAL, LUAR, PVNL, PVNR, AVG, DVB, RIBL, RIBR, RIGL, RIGR, RMGL, RM RICL, RICR, SAADL, SAADR, SAAVL, SAAVR, AVKL, AVKR, DVC, AVJL, AVJR, PVT, AVDL, AVDR, AVL, PVWL, PVWR, RIAL, RIAR, RI AVER, RMFL, RMFR, RID, AVBL, AVBR, AVAL, AVAR, PVCL, PVCR, RIPL, RIPR, URADL, URADR, URAVL, URAVR, RMEL, RMER, RMED, DDR, RMDL, RMDR, RMDVL, RMDVR, RIVL, RIVR, RMHL, RMHR, SABD, SABVL, SABVR, SMDDL, SMDDR, SMDVL, SMDVR, SMBDL, SMBDR SIBDL, SIBDR, SIBVL, SIBVR, SIADL, SIADR, SIAVL, SIAVR, DA01, DA02, DA03, DA04, DA05, DA06, DA07, DA08, DA09, PDA, D , DB04, DB05, DB06, DB07, AS01, AS02, AS03, AS04, AS05, AS06, AS07, AS08, AS09, AS10, AS11, PDB, DD01, DD02, DD03, DD0 A01, VA02, VA03, VA04, VA05, VA06, VA07, VA08, VA09, VA10, VA11, VA12, VB01, VB02, VB03, VB04, VB05, VB06, VB07, VB08 11, VD01, VD02, VD03, VD04, VD05, VD06, VD07, VD08, VD09, VD10, VD11, VD12, VD13, dBWML1, dBWML2, dBWML3, dBWML4, dB BWML7, dBWMR1, dBWMR2, dBWMR3, dBWMR4, dBWMR5, dBWMR6, dBWMR7, vBWML1, vBWML2, vBWML3, vBWML4, vBWML5, vBWML6, v vBWMR2, vBWMR3, vBWMR4, vBWMR5, vBWMR6, vBWMR7, dBWML8, dBWML9, dBWML10, dBWML11, dBWML12, dBWML13, dBWML14, dB , dBwML17, dBwML18, dBwML19, dBwML20, dBwML21, dBwML22, dBwML23, dBwML24, dBwMR8, dBwMR9, dBwMR10, dBwMR11, dBw dBWMR14, dBWMR15, dBWMR16, dBWMR17, dBWMR18, dBWMR19, dBWMR20, dBWMR21, dBWMR22, dBWMR23, dBWMR24, vBWML8, vBW BWML11, vBWML12, vBWML13, vBWML14, vBWML15, vBWML16, vBWML17, vBWML18, vBWML19, vBWML20, vBWML21, vBWML22, vBW BWMR9, vBWMR10, vBWMR11, vBWMR12, vBWMR13, vBWMR14, vBWMR15, vBWMR16, vBWMR17, vBWMR18, vBWMR19, vBWMR20, vBWM BWMR23, vBWMR24, CEPshDL, CEPshDR, CEPshVL, CEPshVR, GLRDL, GLRDR, GLRL, GLRR, GLRVL, GLRVR, CANL, CANR, exc_cel hyp,int,mu_intL,mu_intR,mu_anal,mu_sph,HSNL,HSNR,VC01,VC02,VC03,VC04,VC05,VC06,vm2AL,vm2AR,vm1AL,v 1PR, vm2PL, vm2PR\$

2	I1L.	10	3.	2	.1.	.3.	, 8	.2.		2.2	2.2	2.3		2.	 .7.	. 1	2					 	 			 		 					 				
																							 			 		 									Ľ
				11			11		11	11		11		11	 , , ,		11	11				 	 			 	11	 		11	, ,	11	 	11			1
	,,,,	,,,,,			, , , ,	, , ,		, , ,	''		, , ,	''	, ,	, ,	 , , ,	, ,	, ,	''	, ,		, , ,		 ''	, , ,	, , ,	 , ,	, ,	 , , ,	, , ,	' '	''		 , , ,	'''	, ,	, ,	'
															 							 	 			 		 					 				,
				•••							•				 					•••			 			 	•••	 					 			•••	Ľ
							11		11	11	Þ																										
	0																																				

Data Translation

Six data sets based on sex and synapse type

david@Davids-Mac-mini complete-data % ls -l *csv -rw-r--r--@ 1 david staff 146249 Nov 26 21:15 c-elegans-hermaphrodite-chemical.csv -rw-r--r--@ 1 david staff 227444 Nov 26 23:00 c-elegans-hermaphrodite-gapjn-asymmetric.csv -rw-r--r--@ 1 david staff 229118 Nov 26 23:03 c-elegans-hermaphrodite-gapjn-symmetric.csv -rw-r--r--@ 1 david staff 231818 Nov 27 11:56 c-elegans-male-chemical.csv -rw-r--r--@ 1 david staff 352654 Nov 27 17:02 c-elegans-male-gapjn-asymmetric.csv -rw-r--r--@ 1 david staff 354799 Nov 27 17:03 c-elegans-male-gapjn-symmetric.csv david@Davids-Mac-mini complete-data % python3 c-elegans-parse.py Data options for C. Elegans Connectome: 1. Hermaphrodite - Chemical 2. Hermaphrodite - Neuromuscular Gap Junction - Asymmetric 3. Hermaphrodite - Neuromuscular Gap Junction - Symmetric 4. Hermaphrodite - ALL 3 5. Male - Chemical 6. Male - Neuromuscular Gap Junction - Asymmetric 7. Male - Neuromuscular Gap Junction - Symmetric 8. Male - ALL 3 9. Both sexes - NOT IMPLEMENTED YET! Your choice (number only then press enter): Total detected neurons in file(s): 302 Total neurons added to graph: 302 Total number of edges added to graph: 3709 Average Degree: 24.56291390728477 david@Davids-Mac-mini complete-data %

Homework-Style Data

Important nodes

• RIPL and RIPR (Ring Interneuron P)

https://www.wormatlas.org/neurons/Individual%20Neurons/Neuronframeset.html

10

Homework-Style Data

Sex	Chemical	Electrical Asymmetric	Electrical Symmetric
XX	Number of nodes: 302 Number of edges: 3709 Mean degree: 24.562 Median degree: 20.0 Min Degree: 1 Max Degree: 108 Average clustering coefficient: 0.2436 Min clustering coefficient: 0.0436 Min clustering coefficient: 1.0 Mean betweenness centrality: 0.00632 Median betweenness centrality: 0.0032 Min betweenness centrality: 0.00 Max betweenness centrality: 0.088 Number of disconnected nodes: 0	Number of nodes: 302 Number of edges: 1105 Mean degree: 7.3178 Median degree: 6.0 Min Degree: 0 Max Degree: 50 Average clustering coefficient: 0.1085 Min clustering coefficient: 0. Max clustering coefficient: 0.5 Mean betweenness centrality: 0.0018 Median betweenness centrality: 0.0018 Median betweenness centrality: 0.000 Min betweenness centrality: 0.000 Max betweenness centrality: 0.039 Number of disconnected nodes: 0	Number of nodes: 302 Number of edges: 2196 Mean Degree: 14.5430 Median degree: 10.0 Max Degree: 100 Min Degree: 0 Mean clustering coefficient: 0.21705 Min clustering coefficient: 0 Max clustering coefficient: 1.0 Mean betweenness centrality: 0.00863 Median betweenness centrality: 0.00364 Max betweenness centrality: 0.1494 Min betweenness centrality: 0.0 Number of disconnected nodes: 4
XO	Number of nodes: 391 Number of edges: 4055 Mean degree: 20.7416 Median degree: 16 Max Degree: 86 Min Degree: 0 Mean clustering coefficient: 0.2376 Max clustering coefficient: 1.0 Min clustering coefficient: 0 Mean betweenness centrality: 0.00558 Median betweenness centrality: 0.00246 Min betweenness centrality: 0.00731 Number of disconnected nodes: 5	Number of nodes: 395 Number of edges: 1313 Mean degree: 6.64810 Median degree: 4 Min Degree: 0 Max Degree: 48 Average clustering coefficient: 0.09472 Min clustering coefficient: 0 Max clustering coefficient: 0.5 Mean betweenness centrality: 0.00097 Median betweenness centrality: 6.98954e-05 Min betweenness centrality: 0.01794 Number of disconnected nodes: 41	Number of nodes: 395 Number of edges: 2604 Mean degree: 13.18481 Median degree: 8 Min Degree: 96 Average clustering coefficient: 0.1894 Min clustering coefficient: 1.0 Mean betweenness centrality: 0.0052 Median betweenness centrality: 0.0011 Min betweenness centrality: 0.0011 Min betweenness centrality: 0.0878 Number of disconnected nodes: 41

Homework-Style Data

Degree Distributions

Comparisons (pt. 1)

Generated Graphs per Sex/Synapse Combination

- Erdos-Renyi
- Gilbert
- Watts Stroggatz
- Barabasi-Albert

Generated X number of each graph and averaged values

• Used 10 by default but is configurable

Comparisons (pt. 2)

Hermaphrodite – Chemical

Deltas from Generated vs. C. Elegans	Erdos-Renyi	Gilbert	Watts Strogattz	Barabasi-Albert
Degree Mean	24.562	24.670	12.0	3.973
Degree Max	39.9	38.3	17.3	45.4
Degree Min	12.4	12.7	7.5	1.8
Clustering Mean	0.081	0.081	0.254	0.059
Clustering Max	0.140	0.137	0.565	1.0
Clustering Min	0.035	0.031	0.049	0.0
Betweenness Mean	0.003	0.003	0.005	0.008
Betweenness Max	0.008	0.008	0.016	0.310
Betweenness Min	0.008	0.008	0.016	0.310

Deltas from 10 instances of each generated models averaged together

Comparisons (pt. 3)

Hermaphrodite – Electrical Asymmetric

Deltas from Generated vs. C. Elegans	Erdos-Renyi	Gilbert	Watts Strogattz	Barabasi-Albert
Degree Mean	7.317	24.851	12.0	3.973
Degree Max	15.4	39.2	17.1	44.8
Degree Min	0.8	12.5	7.7	1.9
Clustering Mean	0.023	0.082	0.251	0.057
Clustering Max	0.373	0.132	0.576	1.0
Clustering Min	0.0	0.034	0.048	0.0
Betweenness Mean	0.006	0.003	0.005	0.008
Betweenness Max	0.026	0.008	0.016	0.294
Betweenness Min	2.194	0.000	0.000	0.0

Deltas from 10 instances of each generated models averaged together

Clustering (pt. 1)

Hermaphrodite Chemical Synapses using Girvan-Newman How many clusters/classes would you predict from this?

EDWARDSVILLE

Clustering (pt. 2)

Real World Comparison: The neurons in the hermaphrodite have been assigned to 118 distinct classes according to their topology and synaptic connection patterns (White et al., 1986).

Adjacency matrix input data is available via this class organization as well!

Clustering (pt.3)

Clustering - troubleshooting other synapse types

```
partitions = nx.community.girvan_newman(G)
node_groups = []
node_groups_hashes = [[]]
partition_counter = 0
for partition in partitions:
    node_groups_hashes.append([])
    node_groups.append(list(partition))
    for community in list(partition):
        node_groups_hashes[partition_counter].append(hash(frozenset(community)))
    partition_counter += 1
print('Number of disconnected nodes: ',len(disconnected_nodes))
for i in range(0,len(node_groups)):
    print('length of iteration ',i,',: ',len(node_groups[i]))
```

Decheel			DOTCO			00	
Number	of	disconr	nected	no	des:	0	
length	of	iterati	on 0	,:	2		
length	of	iterati	on 1	,:	3		
length	of	iterati	on 2	,:	4		
length	of	iterati	on 3	,:	5		
length	of	iterati	on 4	,:	6		
	-	• • • •	_				

length	of	iteration	297	,:	299
length	of	iteration	298	,:	300
length	of	iteration	299	,:	301
length	of	iteration	300	,:	302

Resilience and Spreading

The RIPL and RIPR neurons are critical due to their high betweenness of the pharynx and somatic clusters. If targeted by attack, could be quite deleterious. Also makes them key spreaders/activators.

Nodes within the somatic and pharynx sections are not as susceptible to attacks due to their higher clustering coefficients.

Conclusions and Next Steps

More analysis needed to determine "extra" neurons assigned to the male nematode

Additional debugging and code refactoring needed

Resiliency and Spreading analysis needs to be updated

The C. elegans connectome is scale-free!

Combine certain synapse types into unified dataset for ease of use and aggregation of results

Thank You!

Questions?

Related Resources

- The Genetics of Caenorhabditis Elegans S. Brenner 1973
- The pharynx of Caenorhabditis elegans Albertson and Thomson 1976
- The Structure of the Nervous System of the Nematode Caenorhabditis elegans (The Mind of a Worm) White et. al 1986
- Structural Properties of the Caenorhabditis elegans Neuronal Network Varshney et. al 2011
- The Connectome of a Decision-Making Neural Network Jarrel et. al 2012
- <u>https://www.wormatlas.org/</u>
- <u>https://wormwiring.org/</u>