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Abstract  

One of the most complex structures known to man is the human brain.  Emerson Pugh, former 

president of the Institute of Electrical and Electronics Engineers (IEEE), is credited with saying, 

“If the human brain were so simple that we could understand it, we would be so simple that we 

couldn’t.”  Nevertheless, studying the brain not only has esoteric benefits but also has a variety 

of tangible medical applications.  Using non-intrusive in vivo methods for studying this organ, 

such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scanning, 

has allowed scientists and medical professionals insights into this complex organ.  As these 

types of technologies and modalities improve the granularity of their data aggregation, their 

storage requirements increase [3].  This review aims to summarize different database 

architectures and data types used for brain analyses.  It concludes by presenting associated 

tradeoffs and limitations of the different systems as an opening to further research, and a call 

for more granular imaging techniques and larger and more efficient database systems.     

 

Introduction - Brain Image Databases 

There are many ways to represent a brain with data.  The most straight forward method is to 

store image scans of the brain into a pictorial database optimized for images.  Medical imaging 

and diagnostics in this field have been improving rapidly in the last few decades [8].  Many 

processes nowadays generate hundreds if not thousands of images for each subject instance 

[3].  These data sets are often collections from different angles forming 3D structures, as well as 

incorporating a time series as a fourth dimension [3].  Taking small sections or patches of the 



brain at a time can be treated the same as voxel morphometry and follow relational principles 

associated with this discipline [2].   

One cannot treat the human brain as simple data though, as tweaking voxel size and other 

parameters requires a somewhat thorough understanding of an average brain’s physical 

makeup.  The human brain has been widely studied for centuries and different means of 

labelling and classification have arisen long before modern imaging and mapping techniques 

were implemented [10].  One such method of cataloguing the brain is known as creating an 

“atlas” which is most commonly a series of parallel cross sections taken in a 3-dimensional 

coordinate system (sometimes referred to as Talairach Space) and then listed together in a set 

as shown in Figure 1 [5, 10].  Brain atlases form the foundation of the means of classification of 

different sections, and all subsections are defined in these types of buckets (such as certain 

sections belonging to one hemisphere).  By structuring a database with these types of existing 

classifications in mind, scientists and database engineers can enforce logical and real-world 

constraints that neurologists and others have already defined.   

 

Fig. 1 - Different views of the brain illustrating the atlas concept [10] 



These atlas layers are not all scanned at the same time, but happen over a certain period, with 

a time delta applied between each layer.  Aggregating these layers together with respect to 

time can help illustrate how fluids move through tracts and portions of the brain which can help 

with analysis [2].  When storing these types of scans into a database it is important to bear in 

mind this spatial-temporal nature of the data.    

The Digital Imaging and Communications in Medicine (DICOM) international standard is a good 

baseline and benchmark for granularity and storage requirements for modern medical images 

[9].  For example, following this standard a single instance of a Computed Tomography 

Perfusion (CTP) scan of the brain can result in around 5 - 10 GB of images [3].  The CTP scan is 

one of many types of brain imaging techniques.  Other well-known procedures include MRI, PET 

scans, and Electroencephalography (EEG).  High-resolution microscopic scans of a single brain 

can require 10’s of terabytes of storage [5].  Implementing any Brain Image Database (BRAID) 

with appropriate spatial and temporal resolutions can require unique database 

implementations utilizing compression, delineation, data mining, and medical specific 

algorithms [1, 3, 6, 8].   

 

Introduction - Connectomes 

Another common way to attempt to represent the brain is with a mapping of the neuronal 

connections, known as a connectome [8].  Connectomes are conceptually different than image 

databases in that they attempt to capture each neuron and surrounding cells as individual units 

and illustrate connections with each other in a graph-like structure as illustrated in Figure 2 [5, 

8].  In this context if neurons are described as nodes, then functional connectivity can be 



described as mapping signal activation frequency or strength to edge weights between the 

connected neurons [5].  Note that electric activations generally flow in one direction along 

edges, forming a type of directed graph.  Although there is indeed a type of backpropagation 

that occurs to strengthen the edge weights that is beyond the scope of this review [14].        

 

  

Fig. 2 - Micrograph of a neuron and directed connected graph [14] 

 

The core issue with connectome data is that it is almost always derived from imaging data as its 

source [8].  One might be able to build a complete data descriptive model of a neuron and 

connectome, but how they are organized must be based in real-world scenarios.  Scanning 

techniques for this input such as MRI modalities can have a spatial resolution of around 0.7 mm 

isotropic voxels [7].  A cubic millimeter of human or primate brain tissue can contain roughly 

50,000 neurons of which each could have around 6,000 connections to neighboring cells [13].  

This roughly equates to a single MRI voxel containing around 35,000 neurons.  The average 

adult human brain is approximately 1,400 cubic centimeters [7].  These estimations very 

roughly align to total a product of 70 billion neurons, where the reported average of neurons in 

adult human brains is between 85 billion to 100 billion [7].  However, neuronal density has 

many intricacies and does not necessarily scale directly with size as is evident with primates and 



humans having much higher neuronal counts than that of larger brained animals such as the 

whale or elephant [7].     

 

Problem Description 

Depending on what type of question one is trying to answer, a connectome may be considered 

too much information and a normal image database may suffice.  Ultimately, a need for a 

complete connectome representing an average adult human brain is necessary for the 

advancement of neuroscience and humanitarian fields.  Today’s neuroimaging captures data at 

around a cubic millimeter voxel scale while a full connectome representation requires a scale 

of 10’s of nanometers.  Even if such a granular imaging technique were implemented, current 

database systems would be unable to store or query such an exabyte-scale data set 

effectively.  Using compression, estimation, aggregation, and other workaround techniques 

show promise but have drawbacks as well.        

 

Related Work - Brain Image Databases 

Because it is not currently feasible to fully map every neuron and connection in an individual 

human subject’s brain, compromises and alternative approaches are used depending on what 

one is trying to accomplish.  For example, diagnosis and treatment of various diseases often do 

not require neuron-level granularity and an image database of scans is sufficient [4].  Because 

of this, and the fact that connectomes are built from these types of images, it is still prudent to 

implement and optimize these types of BRAIDs.   

 



It is critical to note and emphasize that every human brain is affected by various factors such as 

genetics, age, disease, and more.  There are no two brains exactly alike, and the brain changes 

over time [7].  Studying averages and other types of combinations of multiple subjects can give 

rise to a way to abstract high level functions of different portions of the brain and how they 

communicate with each other [5].  Reducing bias by studying a widely diverse range of subjects 

may assist in producing better aggregate data but may risk over-normalizing data that may be 

particular to certain demographics [11].       

There are generally three different database-management system (DBMS) architectures that 

could be used to implement such a BRAID: relational (RDBMS), object-oriented (OODBMS), and 

object-relational (ORDBMS) [1].  It is suggested that an ORDBMS is the best choice when 

managing complex data such as images and processing complex queries.  Choosing to 

implement a BRAID with an ORDBMS has been shown to afford more extensibility over a 

traditional RDBMS, yet with apparently less overhead than that of a OODBMS [1].  This type of 

model not only supports traditional Standard Query Language (SQL) queries but provides object 

level functions as well which is potentially useful when dealing with large binary data such as 

RGB images.  One of the key benefits of storing the data in this type of way is for data mining 

and machine learning.  

An effective way to store MRI and other modalities’ image data is combining the atlas and voxel 

concept with pre-existing RGB storage concepts.  For example, suppose a specific atlas is being 

used that defines the brain regions into the traditional Talairach Space dimensions.  These 

dimensions are referenced in the traditional anatomical planes of Coronal, Sagittal, and Axial 

(sometimes known as transverse) dimensions.  These provide the coordinate system to be used 



as indexes alongside the RGB data in the database [1, 15].  Figure 3 illustrates that these axes 

are no different from normal Euclidean space.  An example “object-tuple” in an ORDBMS could 

be described as in the format of (zyxx, raw) - indicating the zyxx format represents a line 

segment (z, y, xbegin, xend) with a corresponding raw RGB value or signal strength [1].  These 

object-tuples would be in one of the anatomical dimensions and have a corresponding voxel 

size.  Lastly, the image data itself can finally be stored against this tuple.  Image resolution does 

not necessarily correlate to voxel size, and this can be an important distinction to make when 

discussing compression techniques.     

 

Fig. 3 - anatomical planes [15] 

Once all the voxel, image, and signal strength tuples have been defined against the appropriate 

anatomical planes, the fourth dimensional time series relation can be implemented.  This 

concept is important not only due to the nature of how a single subject’s image scanning takes 

place over time but provides an opportunity for an additional dimension to compress the data 

against.  Utilizing redundancy concepts in compression methods against this time dimension 

can result in an average compression rate of 0.53 and space saving of more than 47% [3].  This 

can be quite significant considering a single subject’s scan can be on the order of gigabytes 

magnitude depending on the experiment protocols’ time duration and modality [3].   



With a framework and schema for a single subject’s BRAID now laid out, it is prudent to expand 

this concept for multiple subjects. Three main entities - STUDY, SUBJECT, and SUBJECT_IMAGE 

can form the backbone of the multi-subject BRAID, upon which the more granular object-tuples 

of the scans themselves can be stored against [1].  In this way, a hybrid RDBMS and ORDBMS 

may prove to be the most effective.  Figure 4 provides an example diagram for such a schema, 

and ties in the concepts discussed previously.   

 

Fig. 4 - Multi-subject BRAID entity-relationship diagram 

 

Content-based medical image retrieval (CBMIR) is an entire field of study and methodologies to 

appropriately handle large amounts of medical image data.  As different studies can provide 

wildly different images based on modalities, resolution, voxel size, and more, the need for 

intelligent methods of sifting through the data arises.  Again focusing on MRI data, researchers 

have demonstrated feature extraction methods to apply tags to images in a deep learning type 

of application [4].  This allows a user to not have to sift through many images but rather have 

the algorithms classify images to make the database more useable.  An example use case for 

such a scenario would be flagging different scans for deleterious patterns such as concussions.   



 

Fig. 5 - CBMIR feature extraction [4] 

Figure 5 shows such a feature extraction type of approach, where the classification of subjects’ 

images happens via algorithmic processes as well as classification of the user’s query.  A 

similarity comparison is used against the extrapolated vectors to arrive at a proposed set of 

relevant images with an associated confidence interval [4].  Because of the very large datasets 

obtained during MRI scans, by focusing on attributes such as color, shape, and texture the 

feature extraction methods can provide average precisions of more than 95% for a given input 

image and desired classification such as Alzheimer’s disease and stroke [4].    

 

Related Work - Connectomes  

Bridging the gap between BRAIDs and connectomes involves imaging the “tracts” and 

connections in the brain on top of the voxel-based atlas models.  Diffusion-weighted (DW) MRI 

and functional MRI are two common types of MRI used for this input.  While both methods 

measure activity differently, they each can be used for tractography algorithms [1, 2].  DW MRI 



measures proton displacement in water as it flows through portions of the brain and is a 

relatively newer technology.  Even with challenges such as the inevitable presence of imaging 

noise in the data, DW has a low signal-to-noise ratio (SNR) and helps provide more precise 

orientations of brain fibers [2].   

In contrast to DW MRI, blood oxygenation level dependent (BOLD) based functional MRI data 

provides another means to illustrate “pathways” in the brain [1].  Tweaking parameters used to 

measure oxygenation levels on images with a color gradient indicating signal strength can 

reveal excellent visualizations of these connections.    

Regardless of methods used to acquire the data, they must ultimately be fed into an imaging 

program for display.  Figure 6 illustrates a popular implementation of a tractography imaging 

software MRtrix.  This software is freely available under the GNU General Public License and 

written exclusively in C++, again lending itself well to the ORDBS type model [2].  It natively 

supports common MRI file formats such as the DICOM, NIfTI and others [2].  Using these types 

of software against images in BRAIDs lets users begin to understand how certain portions of the 

brain interact with each other, and networks and subnetworks begin to emerge.  For example, 

certain areas appear more active during memory recall like PET scans.   

 

Fig. 6 - MRtrix displaying a DW image with different parameters [2]  



Perhaps the most famous recent project to attempt to create a meaningful impact in the 

neuroscience field is the Human Connectome Project (HCP).  This project began in 2010 and 

was an effort to advance data quality and availability.  Over 27 petabytes of data have been 

shared from this project, and “HCP-style” neuroimaging has become a set of best-practice 

strategies for analysis [8, 12].  The HCP infrastructure is based on two independent XNAT 

databases (an imaging informatics platform), one for private use and one for public use [12].  

Many preprocessing and storage pipelines were developed specifically for this project and 

warrants a separate review entirely.  ConnectomeDB is the primary backend component to the 

public use database and can be accessed with custom client applications such as Connectome 

Workbench [12].   

 

Analysis 

While neuroimaging has advanced in leaps and bounds in the past decades, connectomics is still 

in its relative infancy.  The advancement of imaging techniques and associated BRAIDs is the 

vital, living steppingstone required for the completion of an average adult human connectome.  

Only by bringing together the key ideas and concepts of both BRAIDs and connectomes can a 

secure foundation be laid.  Imaging techniques seem likely to continue to advance rapidly, so 

staying prepared to accept and analyze larger and more granular data sets is an immediate 

challenge and focus.   

The HCP really shined with sharing data where other systems struggled by focusing on 

providing consistently high download rates (~300 Mbps maximum) as well as providing physical 

hard drives shipped to recipients at no cost [12].   The lesson here is that there is a strong 



humanitarian element to this type of data, and the advancement of these sciences benefits all.  

Developers producing high quality open-source tools for this data such as MRtrix further 

illustrates the ethical drivers behind this type of research.  Another ethical topic to consider is 

the sensitivity of medical data amongst subjects, as well as the hard requirement to perform 

much of the analysis as minimally invasive as possible.  Evidence shows that PET and MRI scans 

of animal brain regions is an increasingly popular method for tuning scanning parameters and 

while it shows promise to alleviate some of the ethical concerns, the variability amongst animal 

subjects can be greater than that of humans [6].  DICOM and other standards for file formats 

and data quality help unify efforts and prevent unnecessary roadblocks related to design 

conflicts and variability issues.   

Ultimately, any brain exists in time and space and must be treated as such when forming 

storage schema.  Data trends such as decreasing voxel size and increasing image resolution will 

also trend towards increasing granularity as technology advances.  This does not prevent 

hardening the theory and methodologies to be used to store and access brain data.   

 

Future Work 

There seems to be a larger advancement in the machine learning approaches used to analyze 

image data as compared to the connectome data.  There is indeed work being done in this field, 

and it suggests the structural connectivity of the brain (i.e. derived from images) only has a 

modest correlation to the functional connectivity of the brain (i.e. connectomics) [11].  There 

are challenges associated with how diverse individual brains can be, which affects functional 

predictions more so than structural predictions [11].  The only known fully connected 



connectome in existence is that of a nematode, with the common fruit fly following closely 

behind [12].  A logical next step would be completing a full connectome of a mouse and 

primate brain before moving onto humans [7].  There will undoubtedly be many procedural and 

storage challenges identified and addressed in these early stages, and many opportunities for 

research and advancements in the immediate future.   
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