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Abstract—This document is intended to fulfill the requirements
to complete a Literature Survey for Dr. Thoshitha Gamage’s
CS 454 Theory of Computation Class during the Spring 2023
semester (CRN 17991). The desired topic for this project is
”Quantum Error Correction Automata and Grammars.” The
content herein presents a historical context of background the-
ory, introduces quantum mechanics and computation principles,
addresses recent advancements in the field, and concludes with
a proposed hypothesis to be further researched and validated
before the close of the semester.

Index Terms—quantum, error correction, Hamming, Steane,
introduction, automata, grammar, lattice, Turing, Deutsch, Feyn-
man, complexity

I. INTRODUCTION

Modern theory of computation can trace its roots back
almost 100 years to Alonzo Church [1]. In 1936 and 1937,
Church and Alan Turing independently arrived at what would
now become known as the Church-Turing thesis which has
formed the foundation of most aspects of classical computing
[2], [3]. The abstract model known as a Turing machine is
a mathematical concept upon which any classical algorithm
has been known to be able to be implemented. Building
upon concepts such as Finite and Push-Down Automata,
the Turing machine concept has been exhaustively used in
computer science when discussing computability, complexity,
and efficiency.

Around the same time, great advancements in quantum
physics were being made. In 1920’s and 1930’s, famous scien-
tists such as Heinrich Heisenberg and Paul Dirac were building
upon foundational research made in the late 1800’s by Michael
Faraday, Heinrich Hertz, Max Planck, and others. Questions
about the very nature of reality as has been understood since
the ancient Greeks was being called into question especially
with the concept of wave-particle duality.

These two disciplines continued in parallel for a time, before
physicist Richard Feynman changed everything with a 1982
paper asking if quantum physics can truly be simulated via
classical computation [5]. What followed was an explosive
growth in the field of theoretical quantum computing, and
shortly thereafter came experimental physical quantum com-
puters. The quantum computers of today are still in their
infancy, and might be compared to classical computers in
the near decades after Church and Turing’s initial works. Just
like with classical computers, quantum computers require error
detection and correction to perform computations accurately.
Including quantum error correction (QEC) into automata and
grammars is an ongoing area of theoretical research, and is

important as input into the practical design of experimental
architecture for the decades ahead.

II. OUTLINE

This literature survey is not meant to be an in-depth dive
into quantum mechanics, but rather to provide chronological
evidence of the published materials in the quantum computa-
tion field and where the research is at today. Sections III., IV.,
V., and VII. are quite linear in their chronology but section V.I.
does overlap a bit in the timeline. This was done for readability
and to illustrate that quantum computing and error correction is
a wide field for both theorists and practical experimentation.
Each field would not exist without the other, and they both
have adapted over the past decades in parallel.

Because this writeup is intended to be the deliverable
for Theory of Computation class, there are certain elements
that are purposefully excluded to facilitate conciseness of
the topic and to appropriately delineate deliverables in other
classes. Simulating quantum systems, i.e. with GPU-enabled
computations, is only mentioned in passing (see section ).
While there have been many advancements to simulating
quantum systems via classical methods in recent years it is
important to emphasize the limitations of these platforms to
better appreciate what they can or cannot deliver.

III. EARLY LITERATURE (1980’S)

A. Quantum Turing Machines

In 1982, Richard Feynman’s paper, ”Simulating physics
with computers”, changed everything [5]. Feynman’s argu-
ment was that physics could never be truly simulated with a
traditional ”universal” Turing machine! He goes into detail on
how the physical world is quantum mechanical based on some
of the physics literature at the time, and was not convinced
that quantum physics could be simulated. Not being interested
in arguing the point on approximate simulations of physical
phenomena (this much was apparent) the question in mind
was of exact (continuous) simulation. Citing a 1973 concept
from Bennett, Feynman goes on to say how natural laws
are all reversible, and therefore the simulation rules must
be reversible as well [4]. This called into question concepts
of simulating time and space with probabilities which was
groundbreaking at the time. Exploring the topic of wave-
particle duality, particle ”spin” and photon polarization were
determined to correlate quite nicely to ”base” vs. ”excited”
states in a two-state system. But could quantum systems be
probabilistically simulated by a classical computer? Feynman
states that it is not possible due to what he describes as the



”hidden-variable” problem where it is impossible to represent
results of quantum mechanics with a classical theoretical
universal device (such as a Turing machine).

Shortly following Feynman is perhaps the second most
important paper in. this topic, David Deutsch’s ”Quantum
theory, the Church-Turing principle and the universal quantum
computer” [8]. Deutsch begins by picking apart the Church-
Turing hypothesis by stating that it implies a ”physical asser-
tion” in that ”every finitely realizable physical system can be
perfectly simulated by a universal model computing machine
operating by finite means” [8]. The main argument against
this implication was that it required classical physics and
discrete variables for simulations where reality is quantum and
continuous. Thus a desire for a universal quantum computer to
be compatible with this notion of natural continuity emerged.
This theoretical model would allow for ”quantum parallelism”
in that certain probabilistic tasks can be performed faster by a
quantum computer than a classical computer. The paper goes
on to introduce Deutsch’s version Benioff’s quantum complex-
ity theory and its comparisons against classical complexity
theory [6].

Feynman did return to elaborate on his findings in light of
Deutsch and others’ work with an additional paper [10], but
it is not discussed in this writeup for conciseness. Also of
note is Chi-Chih Yao’s work, ”Quantum circuit complexity”
[11] of which is also not elaborated on in this writeup as Yao’s
concepts and foundations are strengthened and built upon later
in the 1990’s (discussed below).

B. Reversible Logic

Peres enters the fray with his contribution of constructing
a quantum-mechanical Hamiltonian [9]. A Hamiltonian is a
type of ”operator” that describes the total energy in a system.
This reinforced important elementary concepts such as the
law of conservation of energy. By devising a notation for
the logical computational steps, Peres showed how each step
in the computation must be locally reversible. According to
the laws of nature, it was insufficient to show that global
reversibility of the overall quantum operations was possible.
These notions aligned with previous work regarding ”unitary”
operations against individual components in the system [?].
This constraint may seem strange, but it becomes extremely
important in the formation of quantum circuits and gate
operations.

IV. CORE LITERATURE (1990’S)

A. Complexity

Quantum mechanics is counterintuitive. Not only is it dif-
ficult to grasp conceptually, but by the early 1990’s many
scientists were wondering how practical a quantum computer
even could be. In 1994 scientists were shocked by a paper
from Peter Shor titled ”Algorithms for quantum computation:
discrete logarithms and factoring” [12]. Shor first goes on
to redefine complexity as a function of time and space.
Considering how algorithms are generally considered efficient
when the number of steps of the algorithm grows as some

type of polynomial function against the size of the input (as
compared to an exponential growth). The first half of this
paper goes on to discuss the Bounded Probabilistic Polynomial
complexity class and how it compares to the newly postulated
Bounded Quantum Polynomial complexity class. The remain-
ing portions of this paper go on to describe that by leveraging
complexity concepts described earlier one could find discrete
logarithms and factor integers on a quantum computer with
a number of steps that is polynomial based on the input
size. These were two well-studied problems at the time and
reinvigorated desire into quantum computing research. Shor
concludes this pivotal work by elaborating on strengths and
weaknesses of this approach - namely the aforementioned
unitary transformation limitations.

Formal evidence that quantum Turing machines violated
the modern ”complexity theoretic” formation of the Church-
Turing thesis began to arise [17]. The class BPP was shown to
be contained in BQP. Building off of Deutsch [8], computer
scientists began to view a quantum Turing machine (QTM)
as a quantum physical analog of a probabilistic Turing ma-
chine. However, unlike probabilistic Turing machines, QTM
allow ”branching” with complex ”probability amplitudes” that
require time-reversible unitary type operations as mentioned
above. Counter-evidence against Deutsch begins to arise stat-
ing that simulation time of a universal QTM can be accom-
plished in polynomial time and not exponential. Building off
of Yao [11] it was elaborated on differences regarding QTM
definitions, as the entire machine could be considered in a
quantum superposition, or individual cells in the machine’s
tape could be considered in quantum superposition.

B. Error Detection

It was around the mid 1990’s when operational scientists
began to take a more serious look at the potential error in
quantum systems. During this time some of the first steps
were being taken to attempt to build a physical experimental
system, and all sorts of questions began to arise. Quantum
systems were extremely fragile, and susceptible to different
types of noise and decoherence. Known for some time had
been the idea of the ”no-cloning theorem” which stated
that any quantum bit could not be ”observed” or measured
without ”collapsing” it into its base or excited state - thereby
losing its superposition [7]. Scientists were finding that the
environmental particles surrounding the system attempting to
be isolated were indeed ”measuring” the qubits in certain ways
and by extension introducing unnecessary collapsing errors. It
was beginning to look bleak for a physical realization of these
technologies.

Following-up on his 1994 work, Peter Shor doubled down
on his claimed practicality of quantum computing systems
by introducing the first error correcting codes for quantum
bits [14]. Even with the realization that quantum mechanics
can speed up certain computations, the idea of decoherence
destroys the information in the superposition of qubit states
[14]. Shor makes an important distinction here regarding
quantum Turing machines. By describing the contents of the



memory cells in the tape as being able to be cast into the
superposition of different states, the computer itself does
not necessarily have to be in its own quantum state. The
idea was that the computer performs deterministic unitary
transformations on the quantum states, which paved the way
to the modern quantum circuit model to replace the traditional
quantum Turing machine model.

Previous works had all suggested that once a single qubit
became entangled with the environment, then noise was in-
troduced and the entire state of the system became corrupted.
Shor argued this may be overly cautious. Building upon the
classical analog of error correction, it was demonstrated how
an arbitrary state of n qubits can be ”encoded” onto 9n
physical qubits in a decoherence-resistant way [14]. This did
indeed require an overhead of 8 additional ”ancilla” qubits to
represent a single ”logical” qubit, but it was far less prone to
error. The decoherence itself was measured without measuring
the state of the qubits (therefore not violating the no-cloning
theorem). But, an assumption was made: only one qubit was
allowed to decohere and the others had to be unaffected. The
paper concludes that decoherence itself must be a unitary
operation following the aforementioned previous work.

Right alongside Shor in 1996 came Steane’s very important
paper, ”Error Correcting Codes in Quantum Theory” which
revolutionized quantum error correction and is still widely
used today [15]. In this paper, the Heisenberg uncertainty
principle is revisited. This paper dove deep into theory and
discussed projecting error correction codes in higher order
Hilbert spaces to maintain data integrity. Considering a quan-
tum system having a Hilbert space of 2n dimensions (positive
n). This could be a set of n two-state systems such as spin or
excitation of particles. A general state of n particles can be
written as a sum (entanglement) of product states. ”Words” in
this context are product states, which is a unique string of bits.
A ”code” is a set of words, all of the same length (number
of bits). In this way, the Hamming distance is defined as the
number of places/bits two words (of same length) differ. The
minimum distance of a code is the smallest hamming distance
allowed between between two code words. By combining this
principle into the ”projection” into higher order Hilbert spaces,
Steane was able to imrpove upon Shor’s nine qubit error
correction code by encoding a single logical qubit onto only
five physical qubits! Great strides were being made to try and
account for the noisy limitations of the existing experimental
applications.

Unfortunately, more bad news soon followed with mention
that the aforementioned encoding and decoding shemes are
vulnerable to noise themselves [16]. Error correction is still
argued to remain beneficial, but details and caveats begin
to arise. Error correction steps regarding the encoding and
decoding were not instantaneous and happened during an
approximate finite time duration (albeit quite small). Any
errors that occur during this time slice remained problematic.
Storage and transmission of the data may have imperfect
correction if affected during this time. For a given strength
of environment interference, there is an optimal rate at which

error correction should be performed. For large scale quantum
calculations (i.e. very deep circuits) this can be a big challenge
[19].

V. ADVANCED THEORY (2000’S)

A. Quantum Automata and Grammars

In the year 2000 Moore and Crutchfield published the
work, ”Quantum automata and quantum grammars,” of which
various topics such as Quantum Finite State (QFA) and Quan-
tum Push-Down Automata (QPDA) are discussed. Included in
this work is pummping lemmas, closure properties, Greibach
normal forms, and more [20]. This work is particularly dense
but aligns most appropriately with the Theory of Computation
class. As such, this work is to be disected and scrutinized the
most. As mentioned in the work’s Introductory section, for
the most part the quantum analog to the classical proofs are
mostly copy and paste with a few notable exceptions. As such,
the fine details of this work are not discussed in this literature
survey, but the core concepts are to be expanded upon during
the project final deliverable. Please note the conclusion section
for next steps on this point.

B. Fault-Tolerant Computation

In the early to mid 2000’s, more information and details
on encoding logical qubits into higher Hilbert spaces with
multiple physical qubits is described [19]. A key concept
which has dramatic implications is the idea of ”error syn-
drome.” If a qubit experiences an error, it is able to encode
its ”error syndrome” onto other qubits using tensor products.
The syndrome itself is measured, thereby avoiding the collapse
of the entire system. It is found to be possible to restore a
state using only partial knowledge of the state in this way. A
proof is given that it is not possible to correct arbitrary errors
for a single logical qubit using four or less physical qubits
(reasserting the five qubit minimum as stated by Steane [15]).
When the measurement is performed against the syndrome
(the ”error subspace”) it ”projects” the syndrome ”upwards”
and corrects the error with its own type of unitary operation.
In this way the ”entanglement was fought with entanglement”
[26].

At this time quantum communication is beginning to sepa-
rate itself somewhat from the umbrella study of quantum com-
putation. While quantum communication and quantum com-
putation are technically two different ”situations” that involve
the manipulation of states by unitary operations where some
information is eventually extracted, communication-specific
topics involve multiple parties and focuses on transmission
(potentially over noisy channels). Computation is usually just
for one party and begins to narrow in on more complex unitary
operations.

Error correction from Shor, Steane, and others were mostly
surrounding case by case bases of errors. Eventually a more
generalized model for quantum error correction emerges. In
2005, Kribs et. al produce a work that proposes ”operator
quantum error correction” that attempts to unify different
paradigms [24]. It sets up a standard error formula of which



any error correction protocol can be built on top of. Upon
reviewing this work, it is not entirely clear how accurate this
finding is and requires further scrutiny.

VI. EXPERIMENTAL RESULTS

A. Initial Physical Systems (1995-2006)

In 1995, some of the first experiments with physical quan-
tum computers began to ermerge using Cold Trapped Ions
[13]. These initial experiments only allowed for up to two
qubits and were not much more than a proof of concept. The
technology was still being decided on and figured out. Then
in 1998 came the first experimental quantum error correction
publication [18]! This latest system used Nuclear Magnetic
Resonance (NMR) technology and demonstrated a degree of
control over three spin-half particles had been successfully
implemented, and it was able to do it at room temperature as
compared to the absolute zero required by Cold Trapped Ions.
The findings of these initial experiments concluded that the
initial states of the ancillas for each encoding/decoding must
be pure. A tradeoff was introduced to allow for ”pseudo-pure”
derivations which were less than ideal.

In the 1990’s it was determined that fault-tolerant quantum
computation was indeed possible, but Duplantier et. al showed
in their 2005 work that suggests that error thresholds can be
acceptable towards this effort [26]. Experimental results show
that the accuracy in implementations of the quantum circuit
model is on the order of only several percent in the best
case, whereas most estimates of the threshold give percentage
numbers of the order of 1×10−4 or less. Thresholds for Steane
codes were also given.

B. Superconducting Qubits. (2007-present)

Sometime around the mid to late 2000’s a new technology
arrived and revolutionized the way physical quantum com-
puters were built. Oliver and Welander give an overview of
”superconducting” quantum bits in their 2013 publication [28].
This technology uses Cooper pairs of electrons in electronic
circuits with Josephson tunnel junctions. When physical sys-
tems are built, they need to have special cooling so as not
to disturb the system. They form ”artificial” or ”synthetic”
atoms by utilizing electronic charge and analyzing across the
Josephson junctions. These can be controlled via microwaves
(much easier than the lasers used in the previous technologies)
and reportedly maintain coherence times on the order of
nanoseconds.

This coherence lifetime of nanoseconds has been recently
improved upon with demonstrations exceeding 0.3 millisec-
onds [31]. By experimenting with different elements (namely
moving away from niobium towards tantalum) scientists were
able to achieve this milestone for a single qubit. A healthy
dose of skepticism is necessary however, as nowhere in this
publication is error correction mentioned, or of an entangled
multi-qubit processor.

Superconducting qubits are the technology upon which most
modern quantum computers are built today. Even though these
systems use ”synthetic” atoms for their computations, they

are argued to be the same as pure atomic implementations,
just a scaled up macro-scale version. The electromagnetic
quantum physics behind Josephson junction is interesting in
and of itself, and it gives theoretical physicists and computer
scientists alike that someday a practical physical system may
actually be realized.

VII. EXPERIMENT-DRIVEN THEORY (PRESENT)

A. Lattice Systems

Building upon the successes of superconducting qubits,
Córcoles et. al make a significant stride towards fault-tolerant
systems detailed in their 2015 publication, ”Demonstration
of a quantum error detection code using a square lattice
of four superconducting qubits” [29]. It is argued here that
by rearranging the circuit into a new type of two-by-two
lattice structure (newly available under the superconducting
technology) researchers were able to detect arbitrary error
on an encoded two-qubit entangled state via ”quantum non-
demolition parity measurements” on another pair of syndrome
qubits. Each qubit uses ”quantum buses” where on a four
qubit square lattice, diagonals are the data qubits and the
corresponding counter-diagonals are the syndrome qubits. If
no error is present, the syndrome qubits are both found to be
in their ground state (as compared to their excited state). This
work lays the foundation for larger lattice structures.

B. Qudits and Higher Dimensions

While quantum error correction is indeed the next immedi-
ate frontier and hurdle to surpass, other strides are being made
in this area of research as well. Traditional qubits (logically
encoded or physical) is a 2-dimensional system. The qubit
is either excited or in its base state. Kues et. al go into detail
on what could be coming next, namely d-dimensional systems
[30]. This paper demonstrates on-chip generation of entangled
quDit (not quBit) systems using photons. By entangling two
qudits of dimension 10, instead of the traditional 2n dimension
they were able to obtain at least one hundred dimensions. More
information on this experimentation is needed, and it is not a
highly cited paper so some caution is to be exercised.

To be further analyzed include Low Density Parity Check
(LDPC) codes, which are a type of linear error correction used
when transmitting messages over a noisy channel. Construc-
tion of quantum LDPC (QLDPC) on N qubits has been a
challenge for experimental and theoretical scientists alike [32].

VIII. CONCLUSION

Understanding the historical context as well as recent publi-
cations surrounding quantum error correction is important for
this topic. With an understanding that at the conclusion of this
course it is expected to give a presentation to the class, more
formula and examples are to be provided instead of just going
through the literature. Hagar’s 2010 publication, ”The Curse
of the Open System,” gives a very detailed introduction to
quantum mechanics and computation and is easy to understand
[?]. Lifting this material and translating and organizing it into
has the potential to be a good part of the overall deliverable



for this course. Duplantier et. al [26] have probably the best
introduction into quantum errors, and the Unitary matrices
used to detect and correct them. More information along the
same vein of of this work is presented by Gottesman [?].
Devitt et. al [27] also have good beginner quantum error
correction examples but with slightly different notation. This
2013 publication is also good because it preaches a healthy
skepticism regarding large scale QEC still being out of reach
with physical systems.

The intention is to further digest the information in the
Theory of Computation class in light of material presented
in Moore’s and Crutchfield’s work [20]. After providing a
background on quantum computations, class concepts are to
be combined with the topics presented here for a foundation
laying of quantum automata and grammars. Building upon
this foundation, new concepts regarding the introduction of
error detection, correction, and fault tolerant concepts directly
into the grammars themselves. Finally, once developed it is
to be argued that these new grammars have direct application
potentials against physical systems such as superconducting
quantum computers.
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