3.12: Determine whether G defined by

$$
G:=\left\{\left.\left(\begin{array}{ll}
x & y \\
0 & 1
\end{array}\right) \right\rvert\, x, y \in R, x \neq 0\right\}
$$

is or is not unimodular.
Solution: We will show that G is not unimodular, i.e., has a left-Haar measure that is not equal to its right-Haar measure. First, we record that

$$
\left(\begin{array}{ll}
a & b \tag{1}\\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
x & y \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
x a & a y+b \\
0 & 1
\end{array}\right)
$$

while

$$
\left(\begin{array}{ll}
x & y \tag{2}\\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
x a & b x+y \\
0 & 1
\end{array}\right) .
$$

Do a bunch more, then, you are done.

3.13: This is just another problem.

Solution: I don't know how to do this one.

