Your Name

Your Signature

Student ID

- Give your answers in exact form. Do not give decimal approximations.
- Calculators are not allowed.
- In order to receive credit, you must show your work. Do not do computations in your head. Instead, write them out on the exam paper.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.

Problem	Total Points	Score
1	5	
2	5	
3	12	
4	8	
5	6	
6	12	
7	18	
8	12	
9	5	
10	100	
11		
Total		

1. [5 points total] Mark each statement below as true or false by circling \mathbf{T} or \mathbf{F}.
2. $\mathbf{T} \mathbf{F}$ If a function f is continuous at the point a then it is differentiable there.
3. $\mathbf{T} \mathbf{F}$ Since the function $f(x)=\frac{(x+3)(x+5)}{(x-2)(x-6)}$ is equal to $\frac{15}{12}$ when $x=0$, and is equal to -16 when $x=3$, the Intermediate Value Theorem can be used to conclude that $f(a)=0$ for some a between 0 and 3 .
4. $\mathbf{T} \mathbf{F}$ If c is a critical number of a function f and also $f^{\prime \prime}(c)=0$, then by the Second Derivative Test, it follows that f achieves neither a local maximum nor a local minimum at $x=c$.
5. T F If $f(x)$ and $g(x)$ are continuous functions which are defined for all real numbers, then

$$
\int_{-2015}^{2015}\left(x^{4}+x^{6} \sin x+12\right) d x=\int_{-2015}^{2015}\left(x^{4}+12\right) d x
$$

5. T F The absolute minimum value of a continuous function $f(x)$ defined on a closed interval $[a, b]$ can only be realized at an endpoint $(x=a$ or $x=b)$ or at a point where the graph of f has a horizontal tangent.
6. [5 points total] Circle the correct answer.
7. If $f^{\prime \prime}(x)=3^{-x}(x-5)(x-14)^{2014}$, then $f(x)$ has inflection point(s) at
A. $x=5$ and $x=14$
B. $x=5$ only.
C. $x=14$ only.
D. $x=0$ only.
8. The absolute minimum value of $f(x)=1-x^{2}$ on $[-1,2]$ is
A. -3 .
B. 0 .
C. 2 .
D. $3 / 2$.
9. The minimum value of the slope of the tangent line to $h(x)=2 x^{3}-3 x^{2}-12 x+5$ occurs at
A. $x=2$.
B. $x=-1$.
C. $x=1 / 2$.
D. There is no such value for the slope
10. Consider the function $h(x)=\ln (g(x))^{3}$ and assume that $g(2)=5$ and $g^{\prime}(2)=-3$. The $h^{\prime}(2)$ equals
A. $\frac{3}{5}$.
B. $-\frac{3}{5}$.
C. $-\frac{9}{5}$.
D. $\frac{5}{9}$.
11. Suppose f is a function such that $f^{\prime}(3)=0$, and $f^{\prime \prime}(3)<0$. What can be said about the function?
A. The function has local maximum value at $x=3$.
B. The function has local minimum value at $x=3$.
C. The function has neither a local maximum nor local minimum value at $x=3$.
D. You need more information to determine whether f has a local maximum or minimum at $x=3$.
12. [12 points total] Consider the function $f(x)=x e^{-x}$.
(a) (4 pts) Find the intervals on which f increases and the intervals on which f decreases.
(b) (4 pts) Find the x -coordinates of any local maxima or minima.
(c) (4 pts) Find the intervals on which f is concave up and the intervals on which f is concave down.
13. [10 points total] Suppose $f(x)=\frac{1}{3 x}$. Using the definition of the derivative, find $f^{\prime}(2)$. (You will receive NO credit for finding the derivative using a different method.)
14. [6 points total] Sketch a well-labeled graph of a continuous function, g, which satisfies all of the following properties.

- $g(0)=-1$.
- $g(1)=0$.
- $g^{\prime}(x)=2$ for $1<x<2$.
- $g^{\prime}(x)=-2$ for $2<x<3$.
- g is decreasing for $x>3$.
- $g^{\prime \prime}(x)<0$ for $x>3$
- g is concave down for $x<1$.

6. [9 points total] Evaluate the following limits. Show work!
(a) $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-1}{|x-1|}$
(b) $\lim _{x \rightarrow \infty} x^{2} e^{-x}$
(c) $\lim _{x \rightarrow 0} \frac{(1-\cos x)^{2}}{x \sin x}$
7. [12 points total] Find $f^{\prime}(x)$ (you should simplify and write your final answers without negative exponents) if
(a) $f(x)=x^{3} e^{-3 x}$
(b) $f(x)=\frac{e^{\sec ^{2} x}}{\ln x}$
(c) $f(x)=\int_{1}^{\sqrt{\cos x}}\left(t^{2016}+2015\right)^{2016} d x$
(d) $f(x)=(\cos x)^{x}$
8. [18 points total] Evaluate the following integrals
(a) $\int x^{3} \sqrt{x^{2}-1} d x$
(b) $\int \frac{\sin x}{\cos ^{2} x} d x$
(c) $\int_{2}^{3} \frac{3 x^{2}+2 x+1}{x} d x$
(d) $\int \frac{\sin x}{1+\cos ^{2} x} d x$
(e) $\int_{-1}^{1}|x| d x$
(f) $\int \frac{(\cos (\tan x))}{\cos ^{2} x} d x$
9. [12 points total] A landscape architect plans to enclose a 4000-square-foot rectangular region in a botanical garden. She will use shrubs costing $\$ 20$ per foot along three sides and fencing costing $\$ 5$ per foot along the fourth side. What is the minimum total cost?
10. [8 points total] The equation $x^{2}-x y+y^{2}=1$ describes an ellipse. Find the coordinates (x, y) of all points on the curve where the tangent to the curve is horizontal.
11. [5 points total] The acceleration, in $\mathrm{m} / \sec ^{2}$, of a particle moving along a line is given as a function of time t (in sec) by the formula

$$
a(t)=2 e^{t}+3 \sin t-t
$$

The initial velocity (at time $t=0$) is $2 \mathrm{~m} / \mathrm{sec}$. What is the particle's velocity at time $t=4$?

