Your Name

Your Signature

Student ID

- Give your answers in exact form. Do not give decimal approximations.
- Calculators are not allowed.
- In order to receive credit, you must show your work. Do not do computations in your head. Instead, write them out on the exam paper.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.

Problem	Total Points	Score
1	5	
2	5	
3	12	
4	8	
5	6	
6	9	
7	12	
8	18	
9	12	
10	5	
11	100	
Total		

1. [5 points total] Mark each statement below as true or false by circling \mathbf{T} or \mathbf{F}.
2. T F The function $f(x)=|x|$ is continuous at $x=0$.
3. T F The graph of $f(x)=x^{2016}$ has an inflection point at $x=0$.
4. T F If $x=a$ is a critical point of a function $f(x)$, then $f^{\prime}(a)=0$
5. T F If $f(x)$ and $g(x)$ are continuous functions which are defined for all real numbers, then

$$
\int_{a}^{b}(c f(x)-g(x)) d x=c \int_{a}^{b} f(x) d x+\int_{b}^{a} g(x) d x
$$

5. T F If $f(y)$ is a twice differentiable function whose first derivative is continuous, decreasing, and negative for all real numbers y, the $f(y)$ is concave up.
6. [5 points total] Circle the correct answer.
7. Suppose f is a function such that $f^{\prime}(2)=5$ and $f(2)=7$. An equation of the line tangent to the curve $y=f(x)$ at the point $x=2$ is:
A. $y=2 x+7$
B. $y-7=2(x-5)$
C. $y=5 x-3$
D. None of the above
8. Suppose f has a local maximum at a. What can you say about $f^{\prime \prime}(a)$?
A. $f^{\prime \prime}(a)>0$.
B. $f^{\prime \prime}(a)<0$.
C. $f^{\prime \prime}(a)=0$.
D. You cannot say anything about $f^{\prime \prime}(a)$ without more information.
9. Suppose that for $a<b<c, \int_{a}^{b} f(x) d x=5, \int_{b}^{c} g(x) d x=3$ and $\int_{a}^{c} g(x) d x=7$. What is the value of $\int_{a}^{b}(f(x)-g(x)) d x$?
A. -5
B. 0
C. 1
D. 9
10. Consider the function $h(x)=e^{-g(x)}$ where the function $g(x)$ is continuous with a continuous first derivative in $(-\infty, \infty)$. If the function $g(x)$ has a local maximum at the point a, then the function $h(x)$
A. Has local minimum at the point a.
B. Has local maximum at the point a.
C. Is negative at the point a.
D. You cannot say anything about $h(x)$ without more information.
11. Suppose f is a function such that $f^{\prime}(3)=0$, and $f^{\prime \prime}(3)=0$. What can be said about the function?
A. The function has local maximum value at $x=3$.
B. The function has local minimum value at $x=3$.
C. The function has neither a local maximum nor local minimum value at $x=3$.
D. You need more information to determine whether f has a local maximum or minimum at $x=3$.
12. [12 points total] Consider the function $f(x)=\frac{e^{x}}{x-1}$.
(a) (3 pts) Find the x -coordinates of the x -intercepts and the y -coordinates of the y -intercept (if any).
(b) (3 pts) Find the intervals on which f increases and the intervals on which f decreases.
(c) (3 pts) Find the x-coordinates of any local maxima or minima.
(d) (3 pts) Find the intervals on which f is concave up and the intervals on which f is concave down.
13. [8 points total] For what value of c is

$$
f(x)= \begin{cases}x^{2}-1, & x<3 \\ 2 c x, & x \geq 3\end{cases}
$$

continuous at every x ?
5. [6 points total] Below is the graph of a function $f(x)$.

Graph its derivative $f^{\prime}(x)$.
6. [9 points total] Evaluate the following limits. Show work!
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{|x-1|}$
(b) $\lim _{x \rightarrow 0^{+}} x \ln x$
(c) $\lim _{x \rightarrow 0} \frac{\int_{0}^{x} e^{-t^{2}} d t}{x}$
7. [12 points total] Find $f^{\prime}(x)$ (you should simplify and write your final answers without negative exponents) if
(a) $f(x)=x^{3} \ln 3 x$
(b) $f(x)=\frac{\cos x}{x^{4}+3}$
(c) $f(x)=\sin e^{\tan x^{2}}$
(d) $f(x)=x^{\tan x}$
8. [18 points total] Evaluate the following integrals
(a) $\int_{0}^{1}\left(x^{2}+2\right) \sqrt{x^{3}+6 x+5} d x$
(b) $\int \frac{\sin x}{\cos ^{2} x} d x$
(c) $\int \frac{6 x^{5}-\sqrt{x}+5 x^{2}}{x^{3}} d x$
(d) $\int \frac{1}{1+16 x^{2}} d x$
(e) $\int_{0}^{3 \pi / 2}|\sin x| d x$
(f) $\int \frac{(\ln x)^{2}}{x} d x$
9. [12 points total] Air is being pumped into a spherical balloon at the rate of 7 cubic centimeters per second. What is the rate of change of the radius at the instant the volume equals 36π ? The volume of a sphere of radius r is $\frac{4 \pi}{3} r^{3}$
10. [8 points total] Find the equation of the tangent line to the curve $e^{y} \sin x+x-x y=\pi$ at the point $(\pi, 0)$.
11. [5 points total] Show that the equation $3 x+2 \cos x+5=0$ has exactly one real root.

