Math 150

SAMPLE FINAL

Fall 2065

Your Na	ame
---------	-----

Your Signature

Student	ID

- Give your answers in exact form. Do not give decimal approximations.
- Calculators are not allowed.
- In order to receive credit, you must show your work. Do not do computations in your head. Instead, write them out on the exam paper.
- Place a box around **YOUR FINAL ANSWER** to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.

Problem	Total Points	Score
1	5	
2	5	
3	12	
4	8	
5	6	
6	9	
7	12	
8	18	
9	12	
10	8 .	
11	5	
Total	100	

1. [5 points total] Mark each statement below as true or false by circling T or F.

1. **T** F The function f(x) = |x| is continuous at x = 0.

2. T F The graph of $f(x) = x^{2016}$ has an inflection point at x = 0.

3. T F If x = a is a critical point of a function f(x), then f'(a) = 0

4. T F If f(x) and g(x) are continuous functions which are defined for all real numbers, then

$$\int_{a}^{b} (cf(x) - g(x))dx = c \int_{a}^{b} f(x)dx + \int_{b}^{a} g(x)dx$$

5. **T F** If f(y) is a twice differentiable function whose first derivative is continuous, decreasing, and negative for all real numbers y, the f(y) is concave up.

SAMPLE FINAL

2. [5 points total] Circle the correct answer.

1. Suppose f is a function such that f'(2) = 5 and f(2) = 7. An equation of the line tangent to the curve y = f(x) at the point x = 2 is:

A. y = 2x + 7 B. y - 7 = 2(x - 5) C. y = 5x - 3 D. None of the above

2. Suppose f has a local maximum at a. What can you say about f''(a)?

A. f''(a) > 0. B. f''(a) < 0. C. f''(a) = 0. D. You cannot say anything about f''(a) without more information.

3. Suppose that for a < b < c, $\int_{a}^{b} f(x) dx = 5$, $\int_{b}^{c} g(x) dx = 3$ and $\int_{a}^{c} g(x) dx = 7$. What is the value of $\int_{a}^{b} (f(x) - g(x)) dx$? A. -5 B. 0 C. 1 D. 9

4. Consider the function $h(x) = e^{-g(x)}$ where the function g(x) is continuous with a continuous first derivative in $(-\infty, \infty)$. If the function g(x) has a local maximum at the point a, then the function h(x)

- A. Has local minimum at the point a.
- B. Has local maximum at the point a.
- C. Is negative at the point a.
- D. You cannot say anything about h(x) without more information.

5. Suppose f is a function such that f'(3) = 0, and f''(3) = 0. What can be said about the function?

- A. The function has local maximum value at x = 3.
- B. The function has local minimum value at x = 3.
- C. The function has neither a local maximum nor local minimum value at x = 3.
- D. You need more information to determine whether f has a local maximum or minimum at x = 3.

Math 150, Fall 2065

- **3.** [12 points total] Consider the function $f(x) = \frac{e^x}{x-1}$.
 - (a) (3 pts) Find the x-coordinates of the x-intercepts and the y-coordinates of the y-intercept (if any).

(b) (3 pts) Find the intervals on which f increases and the intervals on which f decreases.

(c) (3 pts) Find the x-coordinates of any local maxima or minima.

(d) (3 pts) Find the intervals on which f is concave up and the intervals on which f is concave down.

4. [8 points total] For what value of c is

$$f(x) = \begin{cases} x^2 - 1, & x < 3\\ 2cx, & x \ge 3 \end{cases}$$

continuous at every x?

5. [6 points total] Below is the graph of a function f(x).

Graph its derivative f'(x).

6. [9 points total] Evaluate the following limits. Show work!

(a)
$$\lim_{x \to 1} \frac{x^2 - 1}{|x - 1|}$$

(b)
$$\lim_{x \to 0^+} x \ln x$$

(c)
$$\lim_{x \to 0} \frac{\int_0^x e^{-t^2} dt}{x}$$

7. [12 points total] Find f'(x) (you should simplify and write your final answers without negative exponents) if

(a) $f(x) = x^3 \ln 3x$

(b)
$$f(x) = \frac{\cos x}{x^4 + 3}$$

(c) $f(x) = \sin e^{\tan x^2}$

(d) $f(x) = x^{\tan x}$

8. [18 points total] Evaluate the following integrals

(a)
$$\int_0^1 (x^2 + 2)\sqrt{x^3 + 6x + 5} \, dx$$

(b)
$$\int \frac{\sin x}{\cos^2 x} dx$$

(c)
$$\int \frac{6x^5 - \sqrt{x} + 5x^2}{x^3} dx$$

$$(\mathrm{d})\int \frac{1}{1+16x^2}\,dx$$

 $(\mathbf{e})\int_0^{3\pi/2}|\sin x|\,dx$

 $(f)\int \frac{(\ln x)^2}{x}\,dx$

SAMPLE FINAL

9. [12 points total] Air is being pumped into a spherical balloon at the rate of 7 cubic centimeters per second. What is the rate of change of the radius at the instant the volume equals 36π ? The volume of a sphere of radius r is $\frac{4\pi}{3}r^3$

10. [8 points total] Find the equation of the tangent line to the curve $e^y \sin x + x - xy = \pi$ at the point $(\pi, 0)$.

11. [5 points total] Show that the equation $3x + 2\cos x + 5 = 0$ has exactly one real root.