PHIL 206: Deductive Logic

Larkin: Fall 2003

_________________________

 

Test #2: Truth Table Analysis

 

Review

 

I.                   Section 7.3

Part B

2.      Invalid: F = f, G = t

3.      Valid

5.      Invalid:  A =f, B = t

6.      Invalid:  X = t, Y = t

8.      Valid

9.      Invalid:  F = f, G = t ( or F = t, G = f)

11.Valid

12.    Valid

13.    Valid

14.    Invalid:  B = t, S = f, H = t 

15.    Valid

16.    Invalid:  S = f, Z = t, G = t

17.    Valid

18.    Valid

19.    Valid

20.    Valid

 

 

Part C

                        2.  (M v G) ® H, G /\ H                Valid

                        3.  B v M, ~M « N,  N  /\ B            Valid

                        5.  ~N® ~C, ~C ® ~V, V  /\ N         Valid

                        6.  L ® (B v S), ~S · L  /\ B                     Valid

                        8.  V ® A, ~V ® H, ~A ® ~H  /\        Valid

                        9.  L ® N, ~P ® ~N, ~P  /\ ~L            Valid

                        10.  H ® E, ~E v ~V, V  /\ ~H            Valid

 

 

II.                Section 7.4

 

Part C

2.      Invalid      G = T, F = F, H = F

 

3.      Valid      M = F

[only way to make premise true forces conclusion true]

 

5.  Valid            Q = T, P = T, R = T 

[making conclusion false and second premise true forces first premise to be false]

 

6.      Valid      Z = F, Y = F, X = F

[only way to make all premises true]

 

7.      Invalid      W = T, J = T, R = F, S = T

 

8.      Valid      P = F, O = F, N = T, M = T

[only way to make all premises true]

 

9.      Invalid      A = F, B = T, C = T

 

10.  Invalid      P = T, Q = T, R = F

 

 

Part D

  1. Done in class

 

  1. (F ® S) · F  /\ (N « ~S) ® ~N              Valid

 

  1. Done in class

 

  1. V ® E, ~V ® D, ~E ® ~D  /\ D                Invalid

[D = F, V = T, E = T]

 

8.  E v S, E ® (B · U), ~S v ~U  /\ B                Invalid

            [B = F, E = F, S = T, U = F]

 

9.  E ® W, E « V, V ® R, R ® C   /\ W ® C      Invalid

            [W = T, C = F, R = F, V = F, E = F]

 

10.  W « P, M « L, ~(L · P)  /\  ~(W v M)       Invalid

            [W = T, P = T, M = F, L = F]

 

 

 

III.             Section 7.5

Part C

2.  W · P, W ® ~P  /\ M               Valid

[premises are contradictory, so cannot all be true—if you make the first premise true, it forces the second premise to be false]

 

            3.  U v ~U  /\ T                                 Invalid

                        [T = F, U = T/F]

 

            5.  W ® (R ® W)  /\ S v ~S                    Valid

[conclusion cannot be false, so cannot have all true premises and a false conclusion]

 

            6.  D ® ~F, D · F  /\  L               Valid

                        [same deal as #2]

 

            7.  B ® C  /\ B ® C                                 Valid

[obviously if make conclusion false, it automatically makes the premise false]

 

            8.  ~(E · ~E)  /\  E                             Invalid

                        [ E = F]

 

            9.  U ® (L « ~L)  /\ ~U              Valid

[only way to make conclusion false makes the premise false also—for, no matter L is, ‘L «~L’ is false]

 

10.   ~A ® ~L, A « C, L · ~C  /\  ~L        Valid

[again the premises here are inconsistent—if we make third and first premises both true, then second premise forced to be false]