PHIL
206: Deductive Logic
Larkin:
Fall 2003
_________________________
Test #2: Truth Table Analysis
Review
I.
Section 7.3
Part B
2. Invalid: F = f, G = t
3. Valid
5. Invalid: A =f, B = t
6. Invalid: X = t, Y = t
8. Valid
9. Invalid: F = f, G = t ( or F = t, G = f)
11.Valid
12. Valid
13. Valid
14. Invalid: B = t, S = f, H = t
15. Valid
16. Invalid: S = f, Z = t, G = t
17. Valid
18. Valid
19. Valid
20. Valid
Part C
2. (M v G) ® H, G /\ H Valid
3. B v M, ~M « N, N /\ B Valid
5. ~N® ~C, ~C ® ~V, V /\ N Valid
6. L ® (B v S), ~S · L /\ B Valid
8. V ® A, ~V ® H, ~A ® ~H /\ Valid
9. L ® N, ~P ® ~N, ~P /\ ~L Valid
10. H ® E, ~E v ~V, V /\ ~H Valid
II.
Section 7.4
Part C
2. Invalid G = T, F = F, H = F
3. Valid M = F
[only way to make premise true forces conclusion true]
5. Valid Q = T, P = T, R = T
[making conclusion false and second premise true forces first premise to be false]
6. Valid Z = F, Y = F, X = F
[only way to make all premises true]
7. Invalid W = T, J = T, R = F, S = T
8. Valid P = F, O = F, N = T, M = T
[only way to make all premises true]
9. Invalid A = F, B = T, C = T
10. Invalid P = T, Q = T, R = F
Part D
[D = F, V = T, E = T]
8. E v S, E ® (B · U), ~S v ~U /\ B Invalid
[B = F, E = F, S = T, U = F]
9. E ® W, E « V, V ® R, R ® C /\ W ® C Invalid
[W = T, C = F, R = F, V = F, E = F]
10. W « P, M « L, ~(L · P) /\ ~(W v M) Invalid
[W = T, P = T, M = F, L = F]
III.
Section 7.5
Part C
2. W · P, W ® ~P /\ M Valid
[premises are contradictory, so cannot all be true—if you make the first premise true, it forces the second premise to be false]
3. U v ~U /\ T Invalid
[T = F, U = T/F]
5. W ® (R ® W) /\ S v ~S Valid
[conclusion cannot be false, so cannot have all true premises and a false conclusion]
6. D ® ~F, D · F /\ L Valid
[same deal as #2]
7. B ® C /\ B ® C Valid
[obviously if make conclusion false, it automatically makes the premise false]
8. ~(E · ~E) /\ E Invalid
[ E = F]
9. U ® (L « ~L) /\ ~U Valid
[only way to make conclusion false makes the premise false also—for, no matter L is, ‘L «~L’ is false]
10. ~A ® ~L, A « C, L · ~C /\ ~L Valid
[again the premises here are
inconsistent—if we make third and first premises both true, then second premise
forced to be false]