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Fig. 3. The results from FFT and DWT analysis for the in vivo data showing

940 nm wavelengths. Note that for the DWT analysis of (b) there is very little
difference in the 50-, 10-, and 5—s data while for the FFT analysis depicted in
(a) the intensity fluctuates wildly depending on the window size. The average
drops and then recovers as expected for the perfusion signal as the vessels are
clamped and then released. The error bars indicate standard deviation.

IV. CoNCLUSION

In this study the potential of wavelet analysis for amplitude estima-
tion of perfusion signals in vitro and in vivo was explored. It was found
that FFT and wavelet analysis gave very similar results on periodic per-
fusion signals present in the in vitro study. However through analysis of
in vivo data, which contains quasi-periodic perfusion signals, wavelet
analysis had a lower standard deviation and greater stability than the
FFT. The wavelet analysis was able to maintain steady peak height es-
timations throughout all file lengths down to 5 s. This significant reduc-
tion in data size is critical in implantable applications where achieving
minimal power consumption is paramount. Overall it has been shown
that wavelet analysis is a reasonable method for analysis of perfusion
data using an oximetry approach and has proven to be more effective
than FFT for this quasi-periodic in vivo data.
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Automatic Grading of Retinal Vessel Caliber

Huigqi Li, Wynne Hsu, Mong Li Lee*, and Tien Yin Wong

Abstract—New clinical studies suggest that narrowing of the retinal
blood vessels may be an early indicator of cardiovascular diseases. One
measure to quantify the severity of retinal arteriolar narrowing is the
arteriolar-to-venular diameter ratio (AVR). The manual computation of
AVR is a tedious process involving repeated measurements of the diame-
ters of all arterioles and venules in the retinal images by human graders.
Consistency and reproducibility are concerns. To facilitate large-scale
clinical use in the general population, it is essential to have a precise,
efficient and automatic system to compute this AVR. This paper describes
a new approach to obtain AVR. The starting points of vessels are detected
using a matched Gaussian filter. The detected vessels are traced with the
help of a combined Kalman filter and Gaussian filter. A modified Gaussian
model that takes into account the central light reflection of arterioles is
proposed to describe the vessel profile. The width of a vessel is obtained
by data fitting. Experimental results indicate a 97.1% success rate in the
identification of vessel starting points, and a 99.2% success rate in the
tracking of retinal vessels. The accuracy of the AVR computation is well
within the acceptable range of deviation among the human graders, with
a mean relative AVR error of 4.4%. The system has interested clinical
research groups worldwide and will be tested in clinical studies.

Index Terms—AVR, cardiovascular disease, retinal image, vessel mea-
surement, vessel modeling.

1. INTRODUCTION

Cardiovascular diseases such as stroke and coronary heart disease
are the leading causes of morbidity and mortality worldwide [1]. New
studies show that an early marker of cardiovascular risk is generalized
narrowing of the retinal blood vessels [2]. A measurement that has been
used to quantify the degree of narrowing is the arteriolar-to-venular
diameter ratio (AVR) [3]. This AVR ratio is determined by measuring
the diameters of individual retinal arteriolar and venular calibers. A

Manuscript received April 1, 2004; revised December 5, 2004. Asterisk indi-
cates corresponding author.

H. Li is with the Institute for Infocomm Research, Singapore, Singapore
(huiqili @i2r.a-star.edu.sg).

W. Hsu is with the School of Computing, National University of Singapore,
Singapore 117543, Singapore (e-mail: whsu@comp.nus.edu.sg).

*M. L. Lee is with the School of Computing, National University of Singa-
pore, Singapore 117543, Singapore (leeml@comp.nus.edu.sg).

T. Y. Wong is with the Department of Ophthalmology, National University of
Singapore, Singapore 117543, Singapore (ophwty @nus.edu.sg).

Digital Object Identifier 10.1109/TBME.2005.847402

0018-9294/$20.00 © 2005 IEEE



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

Vein Artery Vein

Central
_reflection

T

Fig. 1. Central light reflection is observed in blood vessels. (The reflection is
indicated by the arrows.)

lower AVR is associated with higher blood pressures, and increased
risk of stroke, diabetes, and hypertension.

The current process of calculating the AVR ratio by measuring
retinal vessel diameters from retinal photographic images is tedious
and highly operator-dependent. A human grader must first determine
the vessel type (arteriole or venule). The diameter of each vessel is
then measured manually. This process is not only time-consuming, but
it varies from one inspection to the next even when the same human
grader is involved. Hence, reproducibility is a major concern [4]. An
average human grader typically needs to spend up to twenty minutes
per retinal image to complete the measurement. This is certainly not
feasible for large-scale research studies and clinical utility. Clearly,
there is a need for a more precise and efficient system that can grade
the retinal vessels automatically.

Existing techniques for vessel detection in retinal images can be
broadly classified into two categories: scanning methods [5] and
tracking methods [6]. Scanning methods require a two-step processing
of each image pixel: enhancement and thresholding. An additional
tracking step is needed if the application requires that the vessel struc-
ture be identified. In contrast, the tracking approach utilizes local image
properties to trace the vessels from initial points. This approach is faster
since it only processes the pixels close to the vessels. The proposed
system adopts the tracking strategy since it can provide a meaningful
description of the vessel structure and is computationally efficient.

The scanning and tracking strategies are based on either the vessel
boundary detection or the vessel body extraction. In boundary detec-
tion, vessel edges are detected by edge detectors [7], morphological
methods [8], or deformable models [9]. Edge fitting that minimizes the
distance between the original data and a predefined model is utilized in
the vessel body extraction [5], [10]. It is more robust since it extracts
the vessel as a whole.

Various models have been designed for profiling blood vessels: reg-
ular [11], triangular [12], Elliptical [13], and Gaussian [5], [14]. How-
ever, all these models do not consider the central light reflection in the
vessels [15]. Fig. 1 shows the light reflection in blood vessels (indicated
by arrows). It is important for a model to take into account this light
reflection in order not to miss these vessels.

This paper describes a new approach to obtain the AVR. The starting
points of vessels are detected using a matched Gaussian filter. The de-
tected vessels are traced with the help of a combined Kalman filter and
Gaussian filter. A modified Gaussian model that considers the central
light reflection is developed to describe the vessel profile. The width
of a vessel is obtained by data fitting. Experimental results indicate a
97.1% success rate in the identification of vessel starting points, and a
99.2% success rate in the tracking of retinal vessels. The accuracy of
the AVR computation, with a mean relative AVR error of 4.4%, is well
within the acceptable range of deviation among the human graders.

II. METHODOLOGY
A. Measurement of Vessel Diameters

The tracking strategy first identifies the starting points of all vessels
near the optic disc. These vessels are tracked outwards toward the pe-
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Fig. 2. Modified Gaussian model. A, my, oy, Ay, mq, and o2 indicate the
height, peak position and width distribution of the Gaussian function for vessel
trunk and for central reflection, respectively.

ripheral of the retinal image. In order to identify the starting points for
tracking the retina vessels, we restrict the area of interests to Zone B,
which is defined as the region from 1/2 an optic disc diameter to 1 optic
disc diameter from the disc margin. We model the vessels as consisting
of piecewise linear segments of second-order derivative Gaussian filter.
This allows us to track along the orientation of a vessel. The matched
filters with different rotations are then convolved with the intensity pro-
file on the inner circle of Zone B. The highest response among all the
rotations is defined as the convolution response of that point. The local
maxima of the convolution response on the profile are selected as the
starting points of the vessels.

Next, the vessels are tracked from the detected starting points using
Kalman estimation [11] and matched Gaussian filtering. In order to
obtain an accurate measurement of vessel width during the tracking
of vessels, we note that there is a dip at the bottom of many vessel
profiles. This is caused by the light reflection at the back of the vessel,
also known as the central reflection problem. We design a new model
to describe the vessel profile, taking the central reflection into account

_(z=mp)?
. —Ae 29 4T r< P>
y=f(x)= Yo ¢
Ase 20% +I, P <z < Q

where A; represents the height of the Gaussian, m, is the position
of peak, and ¢, indicates the width of Gaussian function. I; is the
intensity of the immediate retinal background; A2, mo and o> indicate
the height, peak position and width distribution of the central reflection,
respectively; P and () are the positions of the left and right minimum
in the intensity on the profile respectively; I» represents the minimum
intensity.

The proposed modified Gaussian model is shown in Fig. 2. We can
now fit the normal profile of a tracked vessel to the model. The dif-
ference between the model and the vessel profile is known as fitting
error or residual error. The fitting of the vessel to the model proceeds
iteratively, to estimate the values of the parameters in the model that
minimize the residue error. We adopt the Marquardt method [16] to
obtain the optimum parameter values. Once the vessel profile has been
fitted to a modified Gaussian model, the vessel width can be decided
by o as studies have shown that there is a linear relationship between
o1 and vessel width [14].

B. Calculation of AVR

Currently, our system has a manual function to input and validate the
vessel type: artery or vein. The AVR is calculated according to the Wis-
consin protocol [3]. Two measures, the Central Retinal Artery Equiva-
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TABLE 1
RESULTS OF STARTING POINT DETECTION

Large Vessels | Small Vessels

Total Number 375 260
Automatic Detection 364 140
Success Rate 97.1% 53.8%
TABLE 1II
RESULTS OF VESSEL TRACKING
Vessels

Total Number 375

Track Not Started 2

Not Full Track 1

Success Rate 99.2%

lent (CRAE) and Central Retinal Vein Equivalent (CRVE) are defined.
The formula for CRAE is described as the following:

1
2

W. = (0.87”/",? + 1.01W2 = 0.22W, W, — 10.76) )
where W, is the width of the trunk arteriole, W, is the width of the
small branch, and W, is the width of the large branch. The CRVE is
calculated as follows:

2 72 l
We = (0.72W, 4 0.91W; + 450.05) 2 3)

where W. is the width of the trunk vein, W, is the width of the small
branch, and W is the width of the large branch. With that, we can
compute the AVR ratio as follows:

CRAE
CRVE

AVR = . C)

III. EXPERIMENT STUDY WITH RESULTS

A user-friendly system has been developed using Visual C++ to
measure AVR in retinal images. Thirty-five retinal images obtained
from a population-based study in Wisconsin are tested by the soft-
ware system. These color retinal images are captured from the digital
retinal camera system, which includes a Canon CR6-45NM nonmydri-
atic retinal camera and a Canon EOS D60 digital camera. The images
are saved in the format of 24-bit Bitmap with the resolution of 3072 x
2048 pixels. In these images, one pixel stands for 5.33 pm.

Experimental results of the accuracy of starting points detection is
shown in Table I. Large vessels are defined as those vessels whose di-
ameters are more than 45 yzm. Those vessels with diameters less than
45 pm are defined as small vessels, and can be ignored in the AVR
calculation [3]. We observe that 97.1% of the large vessels’ starting
points have been identified correctly using the matched Gaussian filter.
For those vessels whose starting points are missed, our system allows
the manual input by human graders.

Once the starting points have been identified, we track the vessels
using a combined Kalman filter and Gaussian filter within Zone B.
Table II summarizes the tracking results. Vessel tracking is considered
successful if the whole vessel trace in Zone B is detected before any
branching point. In our experiments, the success rate is 99.2%.

Next, 505 vessel segments are obtained from the thirty-five images
to study the modified Gaussian model. Fig. 3 gives the performance
of the modified Gaussian model and the standard Gaussian model. The
residual errors are averaged for the same o1 (round to regular) obtained.
It is noted that the performance of the two models is similar when the
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Fig. 3. Comparison of the two models. The residual error e is similar when o
is small. However, it is much larger in the standard Gaussian model than in the
modified Gaussian mode when o, becomes larger.

TABLE III
RESULTS OF AVR COMPUTATION

Artery Grader | System Vein Grader | System
result result result | result

Al 77.1 76.0 Vi 151.2 145.8

A2 85.8 77.7 V2 91.2 94.3

A3 55.5 48.8 V3 89.1 82.1
Ad 714 65.7 V4 126.6 130.0

AS 76.8 73.6 V5 52.5 57.4
A6 109.2 108.9
A7 60.0 61.4
A8 88.8 83.9
CRAE [ 181.6 179.2
AVR 0.90 0.88

CRVE| 2012 203.6

vessel is small (o1 is small). However, the residual error is much larger
in the standard Gaussian model than in the modified Gaussian mode
when o becomes larger. Therefore, we conclude that the proposed
modified Gaussian model is more accurate for the vessel profile in the
retinal images especially for the large vessels.

In our final set of experiments, we evaluate the accuracy of the com-
puted CRAE, CRVE, and AVR as compared to the human graders.
Thirty-five color retinal images are tested. An example is shown in
Table III. The mean relative errors of the 35 images for CRAE, CRVE
and AVR are 4.5%, 3.2% and 4.4%, respectively. This is well within
the acceptable range of deviation among the human graders [17].

IV. CoNCLUSION

In this paper, we have proposed a new approach for the automatic
grading of retinal vessel caliber. We have investigated robust methods
to detect the starting points of vessels, track the vessels, and determine
the vessel width. A modified Gaussian model is proposed to describe
the vessel profile. The individual vessel diameter is calculated to ob-
tain the summary variables CRAE, CRVE and AVR. Experimental re-
sults indicate a 97.1% success rate in the identification of vessel starting
points, and a 99.2% success rate in the tracking of retinal vessels. The
accuracy of the AVR computation is consistent with the human graders,
with a mean relative AVR error of 4.4%. To date, many clinical research
groups have shown interests in using the proposed system for cardio-
vascular risk prediction in research studies. Further research will con-
firm its ease of use in clinical settings.
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An Autocorrelation-Based Time Domain Analysis
Technique for Monitoring Perfusion and Oxygenation in
Transplanted Organs

Hariharan Subramanian, Bennett L. Ibey, Weijian Xu, Mark A. Wilson,
M. Nance Ericson, and Gerard L. Coté*

Abstract—In designing an implantable sensor for perfusion moni-
toring of transplant organs the ability of the sensor to gather perfusion
information with limited power consumption and in near real time is
paramount. The following work was performed to provide a processing
method that is able to predict perfusion and oxygenation change within
the blood flowing through a transplanted organ. For this application, an
autocorrelation-based algorithm was used to reduce the acquisition time
required for fast Fourier transform (FFT) analysis while retaining the
accuracy inherent to FFT analysis. In order to provide data proving that
the developed method is able to predict perfusion as accurately as FFT
two experiments were developed isolating both periodic and quasi-pe-
riodic cardiac frequencies. It was shown that the autocorrelation-based
method was able to perform comparably with FFT (limited to a sampling
frequency of 300 Hz) and maintain accuracy down to acquisition times as
low as 4 s in length.

Index Terms—Autocorrelation, FFT, perfusion, transplant, pulse
oximeter.

1. INTRODUCTION

In 2002, over 24 000 patients received transplanted organs such as
liver, kidney, and intestines in the United States [1]. One parameter of
interest in the transplant procedure is a measure of local blood perfu-
sion and oxygenation within the graft. Prolonged and untreated loss of
blood perfusion due to acute rejection or mechanical failure (sutures)
will result in loss of organ function and be hazardous to the transplant
patient [2]. The week following transplant proves the most critical be-
cause of high immune response and healing within the organ. Being
able to measure the local blood perfusion within a transplanted organ
continuously within this crucial period will allow physicians to diag-
nose organ failure earlier and potentially increase patient and graft sur-
vival after surgery [2].

In order to obtain the local blood perfusion information, an in vivo
sensor to detect the blood perfusion and oxygenation following organ
transplant is being developed by the Optical Biosensing Laboratory at
Texas A&M University in collaboration with Oak Ridge National Lab-
oratory and the University of Pittsburgh Medical School [3]. The sensor
is based on a modified pulse-oximeter that can be implanted onto the
transplant organ during the surgical procedure and remain in the body
throughout the recovery period. The signal is sent from the sensor to
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