ECE 535 Advanced Image Compression Methods and
Algorithms - 3 hours credit
Professor: Dr. Scott
E Umbaugh Office: Engineering Building,
Room EB3037
Phone: 650-2524, 2948 e-mail: sumbaug@siue.edu
Class Format: Lecture and Project. Lectures of advanced
compression methods and algorithms not covered in ECE 439 will be presented.
Additionally, topics of current interest in research areas of image
compression, will be presented. The students will also participate by
presenting journal papers as well as their own term projects.
Description: Advanced image compression methods and algorithms,
along with topics of current interest in image compression and
coding. Applications of image coding and compression, multi-dimensional image
processing. Group projects.
Objectives: To familiarize the student with current areas
of research interest in image compression. Various paper presentations by the
professor and students will be used to achieve this goal. The students will
become familiar with the literature - journals, magazines, conferences, etc. -
in this research area.
Prerequisite: ECE439 or consent of instructor
Reference Text(s): Digital Image Processing, 4th Edition, Gonzalez and
Woods, Pearson, 2018; DIPA:
Digital Image Enhancement, Restoration and Compression, 4th Edition, SE Umbaugh, Taylor&Francis/CRC
Press, 2023; Supplementary documents are available at the publisher’s web
site as Support
Material
COURSE SCHEDULE
|
Week
|
|
Summer
|
Fall
|
1
|
1
|
Image compression
lectures (1-68): Overview, system model, Golomb-Rice Coding, LZW,
arithmetic coding, bitplane RLC, Dynamic RLC, BTC, Reading: Gonzalez/Woods
– Chapter 8: 612-628; Umbaugh – Chapter 3: 110-117 (image
fidelity criteria), Chapter 8: 393-417; Homework – Umbaugh
book Chapter 8: 5,7,8,10,14,16,18, Supplemental: 1,3,4,5,6;
|
1
|
2
|
Image compression
lectures (69-141): Vector quantization, DPC, fractal, transform coding,
JPEG, Reading: Gonzalez/Woods – Chapter 8: 628-670; Umbaugh –
Chapter 8: 417-437; Homework – Umbaugh book Chapter 8:
20,22,25, Supplemental: 6; Work on project proposal
|
1
|
3
|
Image
compression lectures (142-164): Wavelet-based compression, Reading:
Gonzalez/Woods – Chapter 8: 670-687; Umbaugh – Chapter 8:
437-448; Homework – Umbaugh book Chapter 8: 27,28; Work on
project proposal; Homework Solutions
|
2
|
4
|
Work on homework and project proposal
|
2
|
5
|
Test; Work on
project proposal
|
3
|
6
|
Journal paper/Project
proposal
|
4-5
|
7-9
|
Project meetings
|
6
|
10
|
Progress presentations
by students, project meetings
|
7
|
11-14
|
Project meetings
|
8
|
15
|
Project
presentations, email soft copy of paper and presentation before the
presentation; include project name and your name in file names
|
GRADE:
- 20% Test
- 10% Project proposal and journal paper
presentation
- 5% Progress report
presentation
- 65% term project –
paper (see below), presentation
Class
Attendance Policy: Based on
University Class Attendance Policy 1I9: It is the responsibility of students to
ascertain the policies of instructors with regard to absence from class, and to
make arrangements satisfactory to instructors with regard to missed course
work. Failure to attend the first session of a course may result in the
student’s place in class being assigned to another student.
Class Policies:
Students needing accommodations
because of medical diagnosis or major life impairment will need to register
with Accessible Campus Community & Equitable Student Support (ACCESS)
and complete an intake process before accommodations will be given. Students
who believe they have a diagnosis but do not have documentation should contact
ACCESS for assistance and/or appropriate referral. The ACCESS office is located
in the Student Success Center, Room 1270. You can also reach the office by
e-mail at myaccess@siue.edu or by calling 618.650.3726. For more
information on policies, procedures, or necessary forms, please visit the
ACCESS website at www.siue.edu/access.
Students are
expected to be familiar with and follow the Student Academic Code. It is
included in the SIUE Policies and Procedures under Section 3C2.2. .
TERM PROJECT
Term Project: The project may be from one of the active
research areas here at SIUE:
1. Skin Lesion Detection and Evaluation
2. Retinal Fundus Image Evaluation
3. Veterinary
Thermographic Image Analysis.zip
4. Veterinary
Thermographic Images Remapped
5. CVIPtools Development
6. Matlab
CVIP Toolbox Development
Or a topic of your choice approved by the professor.
You may choose any project relating to image compression or coding. You are
to perform graduate level research in your area of choice and to build on
previous work for your project. Projects will be individual in small classes or
groups in large classes. There will be a maximum of 6 projects in a class.
A paper will be written describing the project and discussing what was
learned during the project. The final paper will be about 25 to 50 pages, typed, double-spaced
(excluding appendices). Include images in the paper!
For a group project, you are required to submit three evaluations of the work
performed by each member in your group, including yourself. These evaluations
are as follows:
- These are all confidential,
the only person to see them is the Professor. The Professor will make
final grade decisions.
- Justify the grades you assign
with specifics - for example, "we scheduled three meetings, student X
always showed up prepared, or student Y was never on time and did not have
their part of the project completed".
- These will be emailed
directly to me at sumbaug@siue.edu before
each of the three milestones – proposal, progress report
presentation and final report.
- Include your name, group
members names, which of the three milestones and the date. A short
evaluation should be written about each member of your group, including
yourself.
- Two items for each person: 1)
Your evaluation of their work in words. 2) A number of points based on the
following:
- 5 points are to be allotted
for each person. If you feel each person contributed equally, give 5
points to each person. If you feel you did a little more, give yourself more
than 5 and the others less. If you feel one person did all the work, give
that person all the points and the others zero. In other words, distribute
all the points according to the amount of work each person contributed to
the project. Note that this is a zero-sum process - the total must add up
to 5 times the number of members. These evaluations will be used as part
of your grade, and will be used to determine individual project grades.
Ø
In addition to handing in a paper copy of the
report, email me a soft copy of the Word file. Before you send me the
file give
it a meaningful name that includes your last name(s) and the
project title.
Your final paper will conform to the following format:
Paper Format Outline
- 1. Title page (project title,
names, course number, date, etc.)
- 2. Table of contents with
page numbers for: different sections, figures, appendices, etc.
- 3. Abstract - 1 page or less.
Concise description of what is contained in the paper, include brief
summary of results.
- 4. Introduction/Project
overview - about 1 to 2 pages.
- 5. Body of paper. Broken down
into sections as required for your part of the project. For example:
Background/theory, experimental methods, discussion and analysis of
results, program descriptions, etc. Present results using graphs, images,
etc., about 10 to 25 pages
- 6. Summary and conclusions.
Summarize any results and draw conclusions as based on these results.
About 1 to 4 pages.
- 7. Suggestions for future
work. Include any ideas you have based on your work and conclusions about followup experiments and/or research. 1 to 2 pages.
- 8. References. Be sure your
references are complete. Avoid web sites as references – these come
and go – find the source, which is usually a published paper.
- 9. Appendices - related
background information, program listings, etc.
General: reports should be typed, double spaced, pages
numbered starting with abstract. The number of pages listed above are only
guidelines, do what is necessary, but keep it concise. DO NOT put in plastic
folder, simply staple in upper left hand corner.
The students will give a presentation of the project during the last week of
the semester.
Grading: The project is worth 65% of your grade, broken
down as follows:
- - 15% Difficulty and
complexity
- - 20% Quality of work and
success
- - 10% Quantity of work
- - 10% Project paper
- - 10% Project presentation
Suggested Project Process:
- 1) Define the project you
wish to pursue
- 2) Library research for
existing algorithms (to get ideas)
- 3) Define C function(s), or
Matlab functions to implement related to project
- 4) Code and debug your
function(s)
- 5) Test your functions on
real images
- 6) Process images/do the
experiments
- 7) Analyze results using
appropriate metrics, tabulate or plot, etc.
- 8) Write report, include
images
- 9) Demonstration to the class
COMPUTER RESOURCES AVAILABLE
Hardware:
- 13 Windows
imaging workstations, frame grabber and image compression boards
- HP
color scanner, 1200 dpi
- HP
Color Laser Printer
- Digitizing
stations with CCD cameras, zoom and standard lenses, controlled light
boxes
- Sony
digital Mavica still/MPEG camera, XGA resolution
(768x1024)
- Canesta’s DP205 3-D camera
Software:
- CVIPtools:
a comprehensive Computer Vision and Image Processing package developed at
SIUE
- Matlab:
CVIP, Image Processing, Neural Network, and Digital Signal Processing
Toolboxes
- Image
databases: Image
Databases
- Microsoft
Office, word processing, presentations, etc
- Microsoft Visual Studio
THE RESEARCH ENGINEER'S NOTEBOOK
NOTE: In ECE 535 you are required to keep a research
engineer's notebook which will be reviewed by the professor during group
meetings.
INTRODUCTION: The technical notebook is one of the most
important tools for any engineering work. This includes: basic research,
product development, or engineering design. It is primarily for the
researcher's own use, but another person with similar technical background
should be able to understand and duplicate any experiment, data, and
conclusion, or to prepare a technical report following only the notebook.
There are many reasons to keep an accurate and complete record of your work:
- to establish the
authenticity of the work.
- to defend patents.
- to act as a basis for
technical reports and articles.
- to avoid duplication of
effort.
The nature of the work and the purpose of the research will influence the
content and format of the notebook.
CONTENT REQUIREMENTS: The notebook must be understandable
to a person with a comparable technical background. It must be legible. It must
be complete; for example, "We got code from book" is NOT an
acceptable entry - what code ?, what page ?, what does it do ?, did you have to
recompile it ?, etc.
The notebook must answer the following questions:
- WHAT WAS DONE? This includes
the approach to the research problem. Any ideas generated should be
included. Algorithmic flowcharts, references used, notes taken, etc.
should be included.
- WHO DID IT? List all those
who participate in the project for a given entry, including yourself, at
the beginning of each entry. Any corrections or alterations should be
initialed.
- WHEN WAS IT DONE? It must be
obvious to any reader when the work was performed. Date all pages and
entries; entires that extend beyond one page
should be dated on each page. Do not leave blank spaces and NEVER
"back-date" entries (NEVER make ANY false entries in your
engineering notebook).
General: The typical engineers notebook available in
bookstores will be blue, brown or black, is approximately 9" X 12",
and has about 100 to 150 pages. The notebook will be bound, never looseleaf,
and the pages should be numbered consecutively, preferably by the printer. For
the our purposes you may use spiral notebooks, as long as each page is numbered
and each entry is dated.
A neat, organized and complete notebook record is as important as the
investigation itself. The notebook is the original record of what was done. It
is not a report to be written after completing an investigation. Do not write
on scratch paper expecting to transfer it later to the notebook. Use a blue or
black non-eraseable pen. Errors are not erased, but
simply marked through with a single line so that they still can be read - later
you may discover that your "error" contains important information.
Leave the first page or two in the notebook blank for a Table of Contents.
This is necessary so that your work can easily be referenced. Use only the
right-hand, odd-numbered pages for the notebook record. Use the left-hand,
even-numbered pages for sketches, rough calculations, and memos to yourself.
You may also place diagrams and graphs on the left, opposite corresponding
procedures and calculations. Do not leave any blank spaces/pages in the
notebook.
Format - Technical Diary
Organization of this format type is left to the engineer. This format is
suited to experimental work, design work, and research. The general format and
content requirements must be met. Notes, program code, flowcharts, procedures,
data, and calculations are blended together logically and chronologically to
form a step-by- step diary describing work. Observations and conclusions are
entered as they are made, and summarized at the logical end of a section. This
format is well suited for research.
Brief Bibliography
Books
- Umbaugh,
SE, Digital Image Processing and
Analysis: Applications with Matlab and CVIPtools, 3rd Edition, CRC Press, Taylor & Francis
Group, Boca Raton, FL, 2017
- Acharya, T., Ray, A.K., Image Processing: Principles and
Applications, Hoboken, NJ: John Wiley & Sons, 2005
- Bhaskaran, V., Konstantinides, K., Image and Video Compression Standards: Algorithms and
Architectures 2nd Edition, Springer, 1997
- Castleman, K.R., Digital Image Processing, Englewood
Cliffs, NJ: Prentice Hall, 1996
- Clarke, R.J., Digital Compression of Still Images and
Video, San Diego, CA: Academic Press, 1995
- Delp, E.J., Mitchell, O.R.,
Image Compression Using Block
Truncation Coding, IEEE Transactions on Communications, Vol. 27, No.
9, pp. 1335 1342, September 1979
- Fisher. Y., editor, Fractal Image Compression: Theory and
Application, NY: Springer-Verlag, 1995
- Gonzalez, R.C., Woods,
R.E., Digital Image Processing,
Upper Saddle River, NJ: Pearson Prentice Hall, 2008
- Guo, L., Umbaugh, S.,
Cheng, Y., Compression of Color Skin
Tumor Images with Vector Quantization, IEEE Engineering in Medicine
and Biology Magazine, Vol. 20, No.6, Nov/Dec 2001, pp. 152-164
- Haidekker, M.A., Advanced Biomedical Image Analysis,
Hoboken, NJ: Wiley, 2011
- Huffman, D.A., A Method for the Reconstruction of
Minimum Redunancy Codes, Proceedings of the
IRE, Volume 40, Number 10, pp. 1098-1101, 1952
- Hunter, R., Robinson, A.H., International Digital Facsimile
Coding Standards, Proceedings of the IEEE, Vol. 68, No. 7, pp.
854-867, 1980
- Jain, A.K., Fundamentals of Digital Image
Processing, Englewood Cliffs, NJ: Prentice Hall, 1989
- Kjoelen,
A., Umbaugh, S. E, Zuke, M., Compression of Skin Tumor Images, IEEE Engineering in Medicine and
Biology Magazine, Vol. 17, No. 3, May/June 1998, pp.73-80.
- Kjoelen,
A., Wavelet Based Compression of
Skin Tumor Images, Master's Thesis in Electrical Engineering, Southern
Illinois University at Edwardsville, 1995
- Kou, W., Digital Image Compression: Algorithms
and Standards, Boston: Kluwer Academic Publishers, 1995
- Linde, Y., Buzo, A., Gray,
R.M., An Algorithm for Vector
Quantizer Design, IEEE Transactions on Communications, Vol. 28, No. 1,
pp. 84-89, January 1980
- Kumaran, M., Umbaugh, S.E.,
A Dynamic Window-Based Runlength Coding Algorithm Applied to Gray-Level
Images, Graphical Models and Image Processing, Vol. 57, No. 4, pp.
267-282, July 1995
- Netravali, A.N., Haskell,
B.G, Digital Pictures:
Representation, Compression and Standards 2nd Edition, NY: Plenum
Press, 1995
- Orzessek,
M., Sommer, P., ATM and MPEG-2:
Integrating Digital Video into Broadband Networks, Upper Saddle River,
NJ: Prentice Hall PTR, 1998
- Poynton, C., Digital Video and HD: Algorithms and Interfaces 2nd
Edition, Morgan Kaufman, 2012
- Rabbani, M., Jones, P.W., Digital Image Compression Techniques,
SPIE--International Society for Optical Engineeering,
1991
- Rangayyan, R.M., Biomedical Image Analysis, NY: CRC
Press, 2005
- Rosenfeld, A., Kak, A.C., Digital Picture Processing, San
Diego, CA: AcademicPress, 1982
- Ryan, T.W, Sanders L.D.,
Fisher, H.D., Iverson, A.E., Image
Compression by Texture Modeling in the Wavelet Domain, IEEE
Transactions on Image Processing, Vol. 5, No. 1, pp. 26-36, January 1996
- Sid-Ahmed, M.A. Image Processing: Theory, Algorithms,
and Architectures, NY: McGraw Hill, 1995
- Sonka, M., Hlavac, V.,
Boyle, R., Image Processing,
Analysis and Machine Vision 4th Edition, Boston, MA: Cengage Learning,
2014
- Taubman, D.S., Marcellin,
M.W., JPEG2000: Image Compression
Fundamentals, Standards and Practice, Norwell, MA: Kluwer Academic
Publishers, 2002
- Tekalp,
A.M., Digital Video Processing,
Upper Saddle River, NJ: Prentice Hall, 1995
- Tranter,W.H,
Ziemer, R.E., Principles of
Communications, 6th Edition, Hoboken, NJ: John Wiley & Sons, 2008
- Watt, A., Policarpo, F., The Computer Image, New York, NY:
Addison-Wesley, 1998
- Welch, T.A., A Technique for High-Performance Data
Compression, IEEE Computer, Vol. 17, No. 6, pp. 8-19, 1984
- Welstead, S., Fractal and Wavelet Image Compression
Techniques, Bellingham, WA: SPIE Press, 1999
- Wu, Y., Coll, D.C., Multilevel Block Truncation Coding
Using a Minimax Error Criterion for High Fidelity Compression of Digital
Images, IEEE Transactions on Communications, Vol. 41, No. 8, August
1993
- Ziv, J., Lempel, J., A Universal Algorithm for Sequential
Data Compression, IEEE Transactions on Information Theory, Vol. 24,
No. 5, pp. 530-537, 1977
Journals
- IEEE Transactions on Image
Processing
- IEEE Engineering in Medicine and
Biology
- Computer Vision, Graphics and Image
Processing (CVGIP)
- CVGIP: Graphical Models and Image
Processing
- CVGIP: Image Understanding
- IEEE Transactions on Medical Imaging
- Computerized Medical Imaging and
Graphics
- IEEE Transactions on Pattern
Analysis and Machine Intelligence
- IEEE Transactions on Computers
- Pattern Recognition
- IEEE Transactions on Signal
Processing
- IEEE Transactions on Neural Networks
- IEEE Transactions on Geoscience and
Remote Sensing
- Photogrammetric Engineering and
Remote Sensing
- International Journal of Remote
Sensing
- Journal of Visual Communication and
Image Representation
- IEEE Transactions on Robotics and
Automation
- ACM Siggraph
publications
- Numerous Conference Proceedings and
other journals from:
IEEE - Institute of Electrical and Electronic Engineers
SPIE - The International Society for Optical Engineering
SMPTE - The Society of Motion Picture and Television
Engineers
PRS - Pattern Recognition Society
ACM - Association for Computing Machinery