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Abstract

A combinatorial construction of the multiple stochastic integral is de-
veloped using sequences in Clifford (geometric) algebras. In particular,
sequences of Berezin integrals in an ascending chain of geometric alge-
bras converge in mean to the iterated stochastic integral. By embedding
such chains within an infinite-dimensional Clifford algebra, an infinite-
dimensional analogue of the Berezin integral is discovered. Hermite and
Poisson-Charlier polynomials are recovered as limits of Berezin integrals
using this construction.

1 Introduction

While combinatorial approaches to multiple stochastic integrals are not new (cf.
Rota and Wallstrom [6] and Anshelevich [1]), the use of sequences in geometric
algebras to construct multiple stochastic integrals is original with the current
author. As in the work of Rota and Wallstrom, the analysis underlying the
geometric algebraic construction relies on the work of Engel [3].

All stochastic processes in the current work are assumed a priori to satisfy
Engel’s regularity conditions [3]. The multiple stochastic integral is then re-
covered as the limit in mean of sequences of Berezin integrals in an ascending
chain of Clifford (geometric) algebras. This chain of Clifford algebras can be
embedded within an infinite-dimensional Clifford algebra generated by the or-
thonormal basis of a separable Hilbert space. An infinite-dimensional analogue
of the Berezin integral occurs as the limit in mean of a sequence of Berezin inte-
grals, each of which considered with respect to a finite-dimensional subalgebra.
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Definition 1.1. The L2-norm of X(ω) is defined by

‖X(ω)‖ =
(
E

(
|X(ω)|2

)) 1
2

. (1.1)

A sequence of random variables {Xk(ω)} is said to converge in mean to X(ω) if

E
(|Xk(ω)−X(ω)|2) → 0 as k →∞. (1.2)

In this case, X(ω) is the limit in mean of the sequence {Xk(ω)}, and one writes

X(ω) = L.I.M.
k→∞

Xk(ω).

By convention, given an interval I = (s, t] and a stochastic process X(t), the
notation X(I) denotes X(t)−X(s).

Engel proved that given a system {X1(t), . . . , Xm(t)} of m ≥ 1 stochastic
processes satisfying particular regularity conditions, one can write

∫
· · ·

∫

0≤t1,t2,...,tm≤t

dX1(t1, ω) · · · dXm(tm, ω) (1.3)

as the limit in mean of sums of the form
∑

1≤i1,...,im≤q

X1(Ii1)X2(Ii2) · · ·Xm(Iim) , (1.4)

where {I1, . . . , Iq} is some partition of [0, t] into disjoint intervals.
Given a stochastic process X(t, ω), one can express the mth iterated stochas-

tic integral of X(t, ω):

X(m)(t, ω) =
∫
· · ·

∫

0≤t1,t2,...,tm≤t

dX(t1, ω) · · · dX(tm, ω) (1.5)

as the limit in mean of sums of the form
∑

1≤i1,...,im≤q

X(Ii1)X(Ii2) · · ·X(Iim). (1.6)

Definition 1.2. Let t > 0, and for n > 0 fix a partition {0 < t1 < t2 < · · · <
tn = t} of [0, t]. Let Pn(t) denote the set {t1, t2, . . . , tn}, and let X(t) be a
stochastic process. Then the mth iterated stochastic integral of X(t) is given by

X(m)(t) = L.I.M.
n→∞

∑
0<tj1 ,tj2 ,...,tjm−1<t

X((0, tj1 ])X((tj1 , tj2 ]) · · ·X((tjm−1 , t]),

(1.7)
where the sum is taken over all m− 1-tuples in Pn(t).

Remark 1.3. The approach developed in this paper relies only on associativity
of the stochastic processes. Any stochastic process whose multiple stochastic
integral can be expressed by the limit in mean (1.7) can be recovered using the
methods detailed here. This includes stochastic processes defined on noncom-
mutative normed associative algebras.
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2 Clifford (Geometric) Algebras

Combinatorial properties of the geometric product in the Clifford algebra C`n,n

are exploited to give an algebraic combinatorial construction of the multiple
stochastic integral. The strategy is to define for each n > 0 a 2n-dimensional
associative algebra generated by commuting nilpotent elements. This algebra
is constructed within a 22n-dimensional associative algebra generated by anti-
commuting nilpotent elements. This algebra, in turn, is constructed within the
24n-dimensional Clifford (geometric) algebra C`2n,2n.

Definition 2.1. For fixed n ≥ 0, let V be an n-dimensional vector space having
orthonormal basis e1, . . . , en. The 2n-dimensional Clifford algebra of signature
(p, q), where p + q = n, is defined as the associative algebra generated by the
collection {ei} along with the scalar e∅ = 1 ∈ R, subject to the following
multiplication rules:

ei ej + ej ei = 0 for i 6= j, and (2.1)

ei
2 =

{
1, if 1 ≤ i ≤ p

−1, if p + 1 ≤ i ≤ p + q = n.
(2.2)

We denote the Clifford algebra of signature (p, q) by C`p,q.

Generally the vectors generating the algebra do not have to be orthogonal.
When they are orthogonal, as in the definition above, the resulting multivectors
are called blades.

Let [n] = {1, , 2, . . . , n} and denote arbitrary, canonically ordered subsets of
[n] by underlined Roman characters. The basis elements of C`p,q can then be
indexed by these finite subsets by writing

ei =
∏

k∈i

ek. (2.3)

Arbitrary elements of C`p,q have the form

u =
∑

1≤i≤dimA
ui ei, (2.4)

where ui ∈ R for each 1 ≤ i ≤ dimA.

Definition 2.2. The degree of a monomial in C`p,q is defined as the cardinality
of its index. For example, deg e1 3 4 = |{1, 3, 4}| = 3.

Definition 2.3. For 0 ≤ k ≤ n, the degree-k part of u ∈ C`p,q is defined as the
sum of degree-k monomials in the expansion of u. In other words,

〈u〉k =
∑

i∈2[n]

|i|=k

ui ei. (2.5)
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Notation The notation 〈〈u〉〉k is used to denote the sum of the coefficients in
the degree-k part of u. That is,

〈〈u〉〉k =
∑

i∈2[n]

|i|=k

ui. (2.6)

Definition 2.4. The Berezin integral is the linear functional∫
B

: C`p,q → R such that

∫

B

∑

i∈2[n]

ui ei de1 · · · den = u12...n. (2.7)

In other words, the Berezin integral is the “top-form” coefficient in the expansion
of u.

Remark 2.5. This use of the Berezin integral is not standard but follows natu-
rally from Berezin’s original construction on the Grassmann algebra [2].

Definition 2.6. Given arbitrary u =
∑

i∈2[n]

ui ei and v =
∑

i∈2[n]

vi ei the Clifford

inner product of u and v is defined by

〈u, v〉 =
∑

i∈2[n]

ui vi. (2.8)

Consequently, the expansion of u ∈ C`p,q can be written

u =
∑

i∈2[n]

〈u, ei〉 ei. (2.9)

This inner-product defines a norm on C`p,q by

‖u‖ = 〈u, u〉 1
2 . (2.10)

This norm is referred to as the Clifford inner-product norm.

The reader is referred to works such as Lounesto [4] and Porteous [5] for
essential background information on Clifford algebras.

Definition 2.7. For any n > 0, let Gn denote the associative algebra generated
by the elements gi = ei + en+i ∈ C`n,n. Evidently, Gn is the associative algebra
spanned by basis elements of the form





scalars: g0 = 1 ∈ R
vectors: g1, . . . , gn

bivectors: gi gj = gij where 0 < i < j ≤ n
...
n-vector: g1 g2 · · · gn

(2.11)
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subject to the multiplication rules
{

gi gj = −gj gi

g1 g1 = g2
1 = g2

2 = · · · = g2
n = 0.

(2.12)

As shorthand, denote the product gi gj as gij . Further, allow i to represent a
canonically ordered multi-index consisting of some subset of [n] = {1, 2, . . . , n},
where it is assumed that i = 0 corresponds to ∅ ∈ 2[n]. Thus arbitrary elements
of Gn have the form

u =
∑

i∈2[n]

ui gi , (2.13)

where ui ∈ R for all i ∈ 2[n] and gi =
∏

k∈i

gk. The degree of a term ui gi is defined

as the cardinality of the index i.
As before, the Berezin integral of u ∈ Gn is defined by

∫

B

u dg1 · · · dgn = u[n]. (2.14)

Let N = 2n and let G ⊂ GN be any collection of pairwise disjoint bivectors.
In other words, G is a collection of bivectors {gij} such that

gij , gk` ∈ G⇒ {i, j} ∩ {k, `} = ∅. (2.15)

Clearly the maximal order of such a collection is N
2 = n. Denote by Gmax the

unique (up to isomorphism) collection of maximal order. Since the bivectors
are disjoint, Gmax constitutes an abelian group.

Definition 2.8. Let Gn
sym denote the associative algebra generated by the

disjoint bivectors {γi}1≤i≤n = Gmax along with the scalar γ∅ = 1 ∈ R. Observe
that

γiγj = γjγi, for 1 ≤ i, j ≤ n, and (2.16)

γ2
i = 0, for all 1 ≤ i ≤ n. (2.17)

As shorthand, denote the product γi γj as γij . Further, allow i to represent a
canonically ordered multi-index consisting of some subset of [n] = {1, 2, . . . , n},
where it is assumed that i = 0 corresponds to ∅ ∈ 2[n]. Thus arbitrary elements
of Gn

sym have the form
u =

∑

i∈2[n]

ui γi , (2.18)

where ui ∈ R for all i ∈ 2[n] and γi =
∏

k∈i

γk. The degree of a term ui γi is

defined as the cardinality of the index i.
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As before, the Berezin integral of u ∈ Gn
sym is defined by

∫

B

u dγ1 · · · dγn = u[n]. (2.19)

It should be clear that Gn
sym is a 2n-dimensional commutative subalge-

bra of the 22n-dimensional non-commutative algebra G2n, which in turn is a
22n-dimensional subalgebra of the 24n-dimensional Clifford algebra C`2n,2n. It
should also be clear that arbitrary elements of Gn can be expanded as in (2.18)
and that the definition of the Berezin integral is unchanged.

Remark 2.9. It is not difficult to see that the non-commutative algebra Gn is
canonically isomorphic to Grassmann’s exterior algebra.

3 Functions Defined on Partitions

In this section, functions are defined on the set of all partitions of [n], denoted
by P([n]). A typical element π ∈ P([n]) is a collection of disjoint subsets, called
blocks, whose union is [n], and |π| will denote the number of blocks contained
in π.

Let f : 2[n] → R be a function on the power set of [n] with f(∅) = 1. Define
the function h : P([n]) → R by

h(π) =
∏

b∈π

f(b). (3.1)

Here each partition element π ∈ P([n]) is assumed to be canonically ordered.
Since π is used to denote a partition of [n], σ will be used to denote a

permutation of the blocks in π. In other words, π ∈ P([n]) and σ ∈ Sk.

Theorem 3.1. Let 0 < k ≤ n. Then

∫

B


 ∑

i∈2[n]

f(i) γi




k

dγ1 · · · dγn =
∑

π∈P([n])
|π|=k

∑

σ∈Sk

h(σ(π)), (3.2)

where Sk is the symmetric group on k elements; i.e., we sum over all permuta-
tions of blocks of each π ∈ P([n]) such that |π| = k.

Proof. Begin with the following expansion:


 ∑

i∈2[n]

f(i) γi




k

=


 ∑

i1∈2[n]

f(i1) γi1


 · · ·


 ∑

ik∈2[n]

f(ik) γik




=
∑

i1,...,ik∈2[n]

f(i1) · · · f(ik) γi1 · · · γik
. (3.3)
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Because γi
2 = 0 for 1 ≤ i ≤ n, this sum is equal to

∑

i1,...,ik∈2[n]

pairwise disjoint

f(i1) · · · f(ik) γi1 · · · γik
. (3.4)

From this follows

∫

B


 ∑

i∈2[n]

f(i) γi




k

dγ1 · · · dγn =
∑

i1,...,ik∈2[n]

pairwise disjoint

f(i1) · · · f(ik) γi1 · · · γik

]

i1∪···∪ik=[n]

.

(3.5)
I.e., the sum is restricted to those multi-indices whose disjoint union is all of
[n]. Since the sum is over collections of k-blocks, the Berezin integral is the sum
over all k-block partitions of [n]. Further, it is clear that the blocks recur in all
possible permutations in the expansion.

Corollary 3.2. Let 1 ≤ k ≤ n. If f is commutative, then

∫

B


 ∑

i∈2[n]

f(i) γi




k

dγ1 · · · dγn = k!
∑

π∈P([n])
|π|=k

h(π). (3.6)

Further,

∫

B

exp


 ∑

i∈2[n]

f(i) γi


 dγ1 · · · dγn =

∑

π∈P([n])

h(π). (3.7)

Example 3.3. Fix n > 1, let [n] = {1, 2, . . . , n}, and define

ηn =
∑

i

γi ∈ Gn
sym. (3.8)

Then for 1 ≤ k ≤ n, ∫

B

ηn
k dγ1 · · · dγn = k!

{
n

k

}
, (3.9)

where
{

n
k

}
denotes the Stirling number of the second kind, which represents the

number of ways a set of n elements can be partitioned into k nonempty subsets.
Letting Bn denote the nth Bell number, defined as the number of ways of

partitioning a set of n elements into nonempty subsets, one further finds
∫

B

eηn dγ1 · · · dγn = Bn. (3.10)
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4 The Evolution Sequence

Let X(t, ω) be any stochastic process whose multiple stochastic integral exists
and is defined by (1.7). Let t > 0 be fixed and consider a sequence of partitions
of the interval (0, t] into n subintervals, 0 = t0 < t1 < · · · < tn = t, such that
the mesh size of these partitions goes to zero as n →∞. That is,

lim
n→∞

max
1≤k≤n

|tk − tk−1| = 0. (4.1)

For each n, let these subintervals be labeled by Tk = (tk−1, tk] for 1 ≤ k ≤ n,
and associate with each a bivector γk ∈ Gn

sym. I.e., γk ∼ (tk−1, tk]. The set
In(t) ⊂ 2[n] of admissible multi-indices is defined by

In(t) = {k ∈ 2[n] :
⋃

κ∈k

(tκ−1, tκ] = (t`, tr] for some 0 ≤ t`, tr ≤ t}. (4.2)

Let Ii denote the subinterval (t`, tk] associated with the bivector γi ∈ In(t).
In other words, each admissible multi-index is associated with a subinterval of
(0, t].

Define the notation X((t`, tr], ω) ≡ X(tr, ω)−X(t`, ω) and let the evolution
sequence {ψn(X(t, ω))}n≥1 associated with the process X(t, ω) be defined by

ψn(X(t, ω)) =
∑

i∈In(t)

X(Ii) γi. (4.3)

Theorem 4.1. If X(t, ω) is a stochastic process whose mth iterated stochastic
integral exists, then

L.I.M.
n→∞




∫

B

ψn (X(t, ω))m
dγ1 · · · dγn


 = X(m)(t, ω), (4.4)

where X(m)(t, ω) is the iterated stochastic integral of X(t, ω).

Proof. Let m > 0 be fixed. For each n > 0, construction of the evolution
sequence and Theorem 3.1 imply

∫

B

ψn(X(t, ω))m
dγ1 · · · dγn =

∑
0=t0<t1<···<tm=t
m-subset partitions


 ∑

π̇∈Sm

m∏

j=1

X((tπ̇(j)−1, tπ̇(j)], ω)


 .

(4.5)
Here the outer sum is taken over all m-interval partitions of (0, t] having the
n-interval partition of the evolution sequence as a common refinement.

By summing over all permutations of the set {i1, . . . , im}, one obtains

∫

B

ψn(X(t, ω))m
dγ1 · · · dγn =

∑
0=t0<t1,t2,...,tm−1<tm=t

m-subset partitions




m∏

j=1

X((tj−1, tj ], ω)


 .

(4.6)
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Hence, for each n > 0, a sum over sets in the product space (0, t]m with
mesh size max

1≤k≤n
|tk − tk−1| is obtained. By hypothesis the multiple stochastic

integral of X(t, ω) exists, so these sums converge in mean to a countably-additive
stochastic measure on (0, t]m as the mesh size approaches zero, which happens
as n →∞.

5 Orthogonal Polynomials

Given a real-valued regular Poisson process P (t, ω), define the compensated Pois-
son process by

D(t, ω) = P (t, ω)− E(P (t, ω)). (5.1)

This has mean zero and hence orthogonal increments.

Definition 5.1. For m ∈ N, let

Km(u, t) =
1
m!

m∑
q=0

(
m

q

)
(−1)qtqu(m−q), (5.2)

where u(m−q) = u(u − 1)(u − 2) · · · (u −m + q − 1). Then Km(u, t) is the mth

Poisson-Charlier polynomial.

Definition 5.2. The nth generalized Hermite polynomial is defined by

Hn(u, t) =
(−t)n

n!
e

u2
2t

dn

dun (e−
u2
2t ). (5.3)

Theorem 5.3 (Engel). If P (t, ω) is the Poisson process and D(t, ω) = P (t, ω)−
t, then ∫

· · ·
∫

0≤t1<t2<···<tm≤t

dD(t1, ω) · · · dD(tm, ω) = Km(P (t, ω), t), (5.4)

If X(t, ω) is standard Brownian motion, then
∫
· · ·

∫

0≤t1<t2<···<tm≤t

dX(t1, ω) · · · dX(tm, ω) = Hm(X(t, ω), t), (5.5)

where Hm(X(t, ω), t) is the mth Hermite polynomial.

These results are recovered using sequences of Berezin integrals.

Corollary 5.4. Let D(t, ω) be the compensated Poisson process of (5.1). For
each n ≥ 1, defining ψn(D(t, ω)) ∈ Gn

sym associated with D(t, ω), one finds

L.I.M.
n→∞




∫

B

ψn(D(t, ω))m
dγ1 · · · dγn


 = m! Km(P (t, ω), t). (5.6)
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Corollary 5.5. Let X(t, ω) be standard Brownian motion. For each n ≥ 1,
constructing ψn(X(t, ω)) ∈ Gn

sym associated with X(t, ω), one obtains

L.I.M.
n→∞




∫

B

ψn(X(t, ω))m
dγ1 · · · dγn


 = m! Hm(X(t, ω), t). (5.7)

6 Berezin Integrals in Infinite-Dimensional Clif-
ford Algebras

While the Berezin integral has no obvious extension to infinite-dimensional alge-
bras, the discussions presented so far seem to suggest one such extension. Given
an increasing sequence of Clifford algebras

C`p0,q0 ⊂ C`p1,q1 ⊂ · · · ⊂ C`pn,qn ⊂ · · · ,

where pi ≤ pj , qi ≤ qj , and pi +qi < pj +qj for all i < j, one may wish to define
a “Berezin integral” on sequences {xi}, where xi ∈ C`pi,qi for each i.

Definition 6.1. Given a separable Hilbert space H having orthonormal ba-
sis {ei} , (1 ≤ i), define the infinite-dimensional Clifford algebra C`(H) as the
associative R-algebra generated by the vectors {ei}, satisfying

ei ej = −ej ei , ∀i 6= j , (6.1)

and

ei
2 =

{
1 , if i ≡ 0 (mod 2)
−1 , if i ≡ 1 (mod 2).

(6.2)

It is clear that C`p,q can be embedded in C`(H) via the mapping ι : C`p,q →
C`(H) defined by

ei 7→
{

e2i , 1 ≤ i ≤ p

e2(p−i)−1 , p + 1 ≤ i ≤ q.
(6.3)

Now the ascending chain is contained within an enveloping algebra:

C`p0,q0 ⊂ C`p1,q1 ⊂ · · · ⊂ C`pn,qn ⊂ · · · ⊂ C`(H) ,

where pi ≤ pj , qi ≤ qj , and pi + qi < pj + qj .
In particular,

C`2,2 ⊂ C`4,4 ⊂ · · · ⊂ C`2n,2n ⊂ · · · ⊂ C`(H) ,

and thus,
G1

sym ⊂ G2
sym ⊂ · · · ⊂ Gn

sym ⊂ · · · ⊂ C`(H).
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Definition 6.2. Let B∞ : `2(C`(H)) → R denote the real-valued linear func-
tional defined on the space of `2 sequences {un} in C`(H) satisfying un ∈ Gn

sym

for each n by

B∞({un}) = lim
n→∞

∫

B

un dγ1 · · · dγn , (6.4)

provided this limit exists, where
∫

B

un dγ1 · · · dγn = un[n] is defined on the sub-

algebra Gn
sym for each n.

It is not difficult to see that B∞ is linear, homogeneous, and bounded. The
extension to a linear mapping `2(A ⊗ C`(H)) → A for any normed associative
algebra A is also obvious.

The limit may be considered strong or weak, but in the context of the current
work, one considers the limit in mean. Then

B∞{ψn(X(t, ω))m} = L.I.M.
n→∞




∫

B

ψn(X(t, ω))m dγ1 · · · dγn


 = X(m)(t, ω).

(6.5)
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