
1 Introduction
I hit a conceptual wall when I realized that the first problem I did where I thought I understood
the weak form of an FEA problem was really just a Rayleigh-Ritz problem. This shouldn’t be
a big deal; if you can do Rayleigh-Ritz over the whole problem, doing FEA over smaller pieces
(i.e. elements) shouldn’t be that much different. But somehow it is causing a conceptual block
for me.

So, I will now work through an axially loaded bar problem, most likely comparing FEA,
Rayleigh-Ritz, and an analytical solution to prove to myself that I understand this stuff (mainly
trying to get to an understanding of the weak form of an FEA problem).

2 Weak Formulation
I think the weak formulation for my problem (a uniform axial bar with one end built into a wall
and a force applied to its free end) starts with the functional

Πp =

Nels∑
i=1

∫ (
1

2
{ε}T [E] {ε}

)
dV −

Nels∑
i=1

∫
{u}T {F} dV −

Nels∑
i=1

∫
{u}T {Φ} dS − {D}T {P}

(1)
which is equation 4.8-11 of Cook et.al. ([1]) with no initial stress or strain. The first summa-

tion of equation 1 represents the strain energy (I think that is the right term) of each element of
the bar. The rest of the summations represent the work done by various kinds of forces acting on
the bar. {F} refers to body forces (i.e. those acting on differential volumes of the element), {Φ}
refers to surface tractions (i.e. forces acting on a differential area of a surface). and {P} refers to
concentrated loads acting at a point (a node) (see [1, pages 88-89]).

Ultimately, the functional will be transformed into

Πp =
1

2
{D}T [K] {D} − {D}T {R} (2)

and the weak formulation will involve making the functional stationary by setting

dΠp = [K] {D} − {R} = 0 (3)

and solving for {D}.

2.1 From the Element Formulation to the Global Formulation
In order to prove to myself that I am understanding all of this, I will work through the transfor-
mation of the functional from the element-by-element formulation of equation 1 to the global
formulation of equation 2. I will do this in general and for my specific problem of an axial bar
under a load at the tip. This is just my re-hashing and interpretting [1, pages 159-161].
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First, displacements within each element are interpolated from the nodal displacements for
each element i

{u} = [N] {d}i (4)

where [N] is the shape function matrix ([1, eq. 4.8-12]). For my axial bar problem, {u} will just
be a scalar.

A relationship between strain and displacement is needed. In general,

{ε} = [∂] {u} (5)

which leads to
{ε} = [B] {d} (6)

(I think that should be {d}i) where
[B] = [∂] [N] (7)

([1] has this as {N} in eq. 4.8-13, but I think that is a typo - [N] is not written as a vector
anywhere else in this section.)

For my specific case,

ε =
∂u

∂x
(8)

I think this means that
[B] =

∂

∂x
[N] (9)

i.e.
ε =

∂

∂x
([N] {d}i) (10)

where u = [N] {d}i has been substituted into equation 8.
Since the {d}i do not vary with x within the element,

ε =
∂

∂x
([N]) {d}i (11)

or
ε = [B] {d}i (12)

making use of (and more or less verifying) equation 9.
Substituting {ε} = [B] {d}i into equation 1 gives

Πp =

Nels∑
i=1

∫ (
1

2
{d}Ti [B]T [E] [B] {d}i

)
dV−

Nels∑
i=1

∫
{u}T {F} dV−

Nels∑
i=1

∫
{u}T {Φ} dS−{D}T {P}

(13)
or

Πp =
1

2

Nels∑
i=1

{d}Ti [k]i {d}i −
Nels∑
i=1

∫
{u}T {F} dV −

Nels∑
i=1

∫
{u}T {Φ} dS − {D}T {P} (14)
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where
[k]i =

∫
[B]T [E] [B] dV (15)

and again taking advantage of the fact that the {d}i do not vary across the element, so they can
be taken out of the integral of equation 13.

For my one dimensional case,

[k]i =

∫
E

(
∂

∂x
[N]

)T (
∂

∂x
[N]

)
dV (16)

Equation 14 can be further simplified by additional substitutions of {u} = [N] {d}i:

Πp =
1

2

Nels∑
i=1

{d}Ti [k]i {d}i−
Nels∑
i=1

∫
{d}Ti [N]T {F} dV −

Nels∑
i=1

∫
{d}Ti [N]T {Φ} dS−{D}T {P}

(17)
or

Πp =
1

2

Nels∑
i=1

{d}Ti [k]i {d}i −
Nels∑
i=1

{d}Ti {re}i − {D}
T {P} (18)

where
{re}i =

∫
[N]T {F} dV +

∫
[N]T {Φ} dS (19)

Defining a matrix of ones and zeros for each element that selects the {d}i from the global dis-
placement vector {D} (i.e. a vector containing the displacements of all nodes)

{d}i = [L]i {D} (20)

and substituting this expression for {d}i into equation 18 gives

Πp =
1

2
{D}T

(
Nels∑
i=1

[L]Ti [k]i [L]i

)
{D} − {D}T

Nels∑
i=1

[L]Ti {re}i − {D}
T {P} (21)

Defining a global stiffness matrix [K] and vector {R}

[K] =

Nels∑
i=1

[L]Ti [k]i [L]i (22)

and

{R} = {P}+

Nels∑
i=1

[L]Ti {re}i (23)

allows equation 21 to be rewritten as

Πp =
1

2
{D}T [K] {D} − {D}T {R} (24)

which is the same as equation 2.
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Figure 1: Axially loaded bar with 4 elements.

3 The Axially Loaded Bar
I think that applying all of this to the axially loaded bar problem starts with the shape functions

[N] =

[
L− x
L

x

L

]
(25)

which leads to

[B] =

[
− 1

L

1

L

]
(26)

according to equation 9. From this definition of [B], the element stiffness matrices can be
found equation 15 where the integration over the element is preformed by substituting dV = Adx
and integrating from x = 0 to x = L:

[k]i =

 AE

L
−AE

L

−AE
L

AE

L

 (27)

or

[k]i =
AE

L

[
1 −1
−1 1

]
(28)

which agrees with [1, eq. 3.3-10], but has been derived from a functional.
If I model the axially loaded bar with 4 elements, as shown in Figure 1, the global displace-

ment vector will be

[D] =


u1

u2

u3

u4

u5

 (29)

and boundary condition will require that

u1 = 0 (30)

The [L]i for each element wil be

[L]1 =

[
1 0 0 0 0
0 1 0 0 0

]
(31)
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[L]2 =

[
0 1 0 0 0
0 0 1 0 0

]
(32)

[L]3 =

[
0 0 1 0 0
0 0 0 1 0

]
(33)

[L]4 =

[
0 0 0 1 0
0 0 0 0 1

]
(34)

The contribution of each element to the global stiffness matrix will be

[K]1 =



AE

L
−AE

L
0 0 0

−AE
L

AE

L
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


(35)

[K]2 =



0 0 0 0 0

0
AE

L
−AE

L
0 0

0 −AE
L

AE

L
0 0

0 0 0 0 0
0 0 0 0 0


(36)

[K]3 =



0 0 0 0 0
0 0 0 0 0

0 0
AE

L
−AE

L
0

0 0 −AE
L

AE

L
0

0 0 0 0 0


(37)

[K]4 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0
AE

L
−AE

L

0 0 0 −AE
L

AE

L


(38)
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so that the global stiffness matrix is

[K] =



AE

L
−AE

L
0 0 0

−AE
L

2AE

L
−AE

L
0 0

0 −AE
L

2AE

L
−AE

L
0

0 0 −AE
L

2AE

L
−AE

L

0 0 0 −AE
L

AE

L


(39)

or

[K] =


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 (40)

with the AE/L factored out.
For a point load P at the tip

[R] =


0
0
0
0
P

 (41)

and the problem is nearly ready to be solved for the nodal displacements {D} according to

[K] {D} = {R} (42)

once the boundary condition is properly handled.
But this seems like a problem, because the first row of this equation would seem to say that

u1 + u2 = 0 which will be bad once the boundary condition of u1 = 0 is plugged in.
[1, section 2.7] says that for any given row of equation 42, either {D}j or {R}j can be

specified, but not both. That means that if I am specifying

{D}1 = 0 (43)

{R}1 must be unknown, and therefore not equal to zero. But how does this play out in the weak
formulation of the problem? The force at the left boundary of the bar does no work because
u1 = 0.

[1, section 2.7] suggests a procedure for handling this situation and finding the unknown
{R}1. I think this will lead to the same solution as just eliminating the first row from equation 42
along with the first column of [K]. I guess I will try this out.
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

−u2AE

L
2u2AE

L
− u3AE

L

−u4AE

L
+

2u3AE

L
− u2AE

L

−u5AE

L
+

2u4AE

L
− u3AE

L
u5AE

L
− u4AE

L


=


R1

0
0
0
P

 (44)

Removing the first row and column of [K] gives

[K′] =



2AE

L
−AE

L
0 0

−AE
L

2AE

L
−AE

L
0

0 −AE
L

2AE

L
−AE

L

0 0 −AE
L

AE

L


(45)

and the corresponding {D} and {R} vectors are

{R′} =


0
0
0
P

 (46)

{D′} =


u2

u3

u4

u5

 (47)

Augmenting {R′} to [K′] gives

[Aug] =



2AE

L
−AE

L
0 0 0

−AE
L

2AE

L
−AE

L
0 0

0 −AE
L

2AE

L
−AE

L
0

0 0 −AE
L

AE

L
P


(48)
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which can then be reduced to echelon form

[Sol] =



1 −1

2
0 0 0

0 1 −2

3
0 0

0 0 1 −3

4
0

0 0 0 1
4LP

AE


(49)

The bottom row can be solved for

u5 =
4LP

AE
(50)

And back substitution produces

u4 =
3LP

AE
(51)

u3 =
2LP

AE
(52)

u2 =
LP

AE
(53)

The total length of the bar is l = 4L, so these answers make conceptual sense.

u5 =
l P

AE
(54)

u4 =
3 l P

4AE
(55)

u3 =
l P

2AE
(56)

u2 =
l P

4AE
(57)

And the force at the left boundary can be found from

R1 = −u2AE

L
(58)

or
R1 = −P (59)

which also makes sense.
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4 Comparison to Analytical Solution
Having (apparently) solve the problem correctly using FEA and gotten an answer that makes
physical sense, the next step will be comparing this answer to the analytical one and evaluating
its merit/accuracy.

Based on the FEA solution, it seems like the analytical solution is

u(x) =
x

l

lP

AE
=
xP

AE
(60)

The bar is in a state of constant stress for all values of x:

σx =
P

A
= E

∂u

∂x
(61)

so that
∂u

∂x
=

P

AE
(62)

Since u depends only on x,
du

dx
=

P

AE
(63)

and
du =

P

AE
dx (64)

which means that
u =

xP

AE
+ C (65)

but the constant of intergration must vanish because u(0) = 0. So, the assumed solution based
on FEA has been verified.

4.1 Rayleigh-Ritz Verifiacation
Even thought the solution has been verified already, further verification could come from using a
Rayleigh-Ritz approach. The functional for the Rayleigh-Ritz problem is

Πp =

∫ l

0

1

2
E
∂u

∂x

2

Adx− Pu(l) (66)

The following expansion for u(x) will be used

u(x) = a2 x
2 + a1 x (67)

Substituting this experssion for u(x) into equation 66 and integrating produces

Πp =
(4 a2

2 l
3 + 6 a1 a2 l

2 + 3 a2
1 l) AE

6
−
(
a2 l

2 + a1 l
)
P (68)

Πp must be stationary with respect to ai, so the partial derivatives must vanish
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∂Πp

∂a1

=
(6 a2 l

2 + 6 a1 l) AE

6
− l P (69)

∂Πp

∂a2

=
(8 a2 l

3 + 6 a1 l
2) AE

6
− l2 P (70)

These two equations can be solved for[
a1 =

P

AE
, a2 = 0

]
(71)

which results in
u(x) =

xP

AE
(72)

as expected, further verifying the solution.
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