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Chapter 4  

The Schrödinger Equation and two more Principles 

In the previous chapter, we have studied spin-half and noticed that the 

measurement returns for any spin component are only two, namely   

  

h /2 and   

  

- h /2 .  In 

the theory, this is mirrored by the fact that the operators for spin components have only 

those two eigenvalues.  More generally, the set of eigenvalues for spin operators, what is 

called their “spectrum”, is finite and therefore discrete.  However, there are other 

observables for which we would expect an infinite number of possible measurement 

returns.  For example, a particle could be (almost) anywhere between two points, and 

therefore the spectrum of the position operator must be infinite. We begin this chapter by 

considering the observable ‘position’; to do that, we must introduce the notion of 

probability density.  

4.1. Probability Density  

The mass density

  

d  of a body is mass per unit length.  Consequently, if a wire’s 

density is constant at 

  

d =1kg /m  and its length is 3 meters, the wire’s total mass will be 

3kg, namely, the area of the figure between d ‘s plot and the x-axis from 0 to 3 (Fig. 1).   
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Even if the plot of the density of more complex than the one we just considered, the point 

remains the same: to determine the mass of the wire between 0 and 3, we reckon the area 

under d between 0 and 3.   

Consider now a particle P moving to the right along the x-axis from 

  

1 to l .  At 

time 

  

t = 0  P is at 1, and suppose that its speed is given as a function of position: 

  

v =1/ x .          (4.1.1)  

In other words, the farther ahead P moves, the slower its velocity according to (4.1.1).  

Imagine taking snapshots at random times while P goes from 1 to l.  Where will the bulk 

of the snapshots depict P to be?  P starts with speed 

  

v0 =1 and then slows down as it 

progresses to higher values of x until it gets to l with velocity is 

  

1/ l .  Hence, if we divide 

the interval 

  

[l - 1] into equal intervals dx, P will spend less time in the early intervals 

(those closer to 1) and more in the later ones (those close to l).  Consequently, the 

snapshots will mostly depict P being closer to l than to 1.   

Let us make the previous considerations more precise.  The probability that P will 

be observed in an interval dx is directly proportional to the amount of time P takes in 

traversing it.  In other words, the probability that P will be observed in an interval dx is 

inversely proportional to the speed v with which P traverses it, and is therefore equal to 

  

C
1

v
, where C is a constant of proportionality.  We express this by  

  

Pd = C
1

v
= Cx ,         (4.1.2) 

where 

  

Pd  is the position probability density.  As mass density measures mass per unit of 

length, so position probability density measures probability per unit of length.  The 
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former is proportional to the amount of matter per unit of length, the latter to the amount 

of time the particle spends in traversing a unit of length.  

 
 
 
 
 
  
 

 

Figure 2 

The probability that P is between 1 and l is given by the area A of the figure under nm, 

namely, the trapeze 1lmn in figure 2.  From classical geometry, we obtain 

  

A =
1

2
(C + Cl)(l -1) .        (4.1.3) 

However, the particle must be somewhere between 1 and l, and therefore

  

A = 1.  Hence, 

  

C =
2

l2 -1
.1          (4.1.4) 

Consequently, 

  

Pd =
2

l2 -1
x .         (4.1.5)  

The process whereby one determines the constant C is called “normalization”.  It is 

demanded by the principle that the sum of all the mutually exclusive possibilities of a 

                                                 
1 That is, 

  

A =
1

2
(C + Cl)(l -1) =

1

2
C(l2 -1) , from which (4.1.4) follows immediately. 

  1 

C 

l x 

Pd m 

n A 

Cl 
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situation must be equal to one.  It is the same logical step requiring that the vector 

representing a quantum state be normalized.2 

Now let us plug in some figures.  Suppose that 

  

l = 3 .  Then, from (4.1.5) we 

obtain 

  

Pd =
1

4
x .         (4.1.6)   

Hence, the probability that P is between 1 and 2 is given by the area under 

  

Pd  between 1 

and 2 (Fig. 3).  

 

 
 
 
 
 
  
 

Figure 3 

Consequently,  

  

Pr(1,2) =
3

8
,         (4.1.7) 

while the probability that P is between 2 and 3 is 

  

Pr(2,3) =
5

8
.         (4.1.8) 

                                                 
2 Of course, our example was artificially simple in that A was the area of a trapeze, a 

figure of classical geometry; typically, the area of the figure under Pd must be obtained by 

using the integral 

  

A = Pd dx
a

b

ò .  However, the principle remains the same. 

  1 

1/4 

  3 x 

Pd 

3/4 

 2  

1/2 
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As we expected, since P slows down, it is more likely to be observed after the midpoint 

than before.  Notice that 

  

Pr(1,2) + Pr(2,3) =1, as it should be.  

4.2 Schrödinger’s Wave Function 

Consider a particle moving along the x-axis.  Quantum mechanics determines the 

probability of observing the particle in a given position at a given time by using the wave 

function 

  

Y(x, t)  of the particle.  One gets 

  

Y(x, t)  by solving the Time Dependent 

Schrödinger Equation (TDSE), 

  

  

ih
¶

¶t
Y(x, t) = -

h2

2m

¶ 2

¶x 2
Y(x, t) + V (x,t)Y(x,t)    (4.2.1) 

where V is the (classical) potential energy determined by the physical system under 

investigation, m the mass of the particle, and   

  

h  (h-bar) is Plank’s constant. 3  In other 

words, the wave function is a solution of TDSE.  Setting up TDSE and solving it can be 

(and usually is) difficult.  Fortunately, we need not attempt it.  Suffice it to say that the 

relationship between the wave function, probability, and physical reality is given by 

Born’s statistical interpretation: 

  

Y(x, t)
2
, the squared modulus of the normalized wave 

function, is the probability density that upon observation the particle will be found at 

point x at time t.4  For example, suppose that at time 

  

t1, 

  

Y(x,t1)
2
 is the curve in figure 4. 

                                                 

3 Actually,   

  

h  is Plank’s constant divided by 

  

2p . 

  

¶

¶t
 represents partial differentiation with 

respect to t and 

  

¶

¶x
 partial differentiation with respect to x.  For an explanation of 

differentiation, see appendix 1. 

4 From now on, we shall assume that all the state vectors and all the wave-functions have 

been normalized.  As we know, 

  

Y x,t( )
2

= Y x,t( )
*
Y x,t( ). 
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Figure 4 

Then, the area under 

  

Y(x, t)
2
 between a and b is the probability that a position 

measurement at time t1 will return a value between a and b. 5  The key word here is 

“measurement”.  That is, at least in the minimalist version we consider at this stage, 

quantum mechanics makes predictions only about measurement returns.  In other words, 

all it tells us is what returns we shall have, and with what probability, if we perform such 

and such an experiment, without making any claims about quantum particles outside of 

the experimental setting. 

 

                                                 
5 From now on, to avoid clutter, at times we shall use “

  

Y” instead of “

  

Y(x, t)”.  Often, 

not all the mathematical solutions to TDSE can satisfy the normalization requirement, in 

which case, being incompatible with the statistical interpretation, they do not represent 

particles.  Of course, it is not enough to say that, after normalization, 

  

Y
2

a

b

ò dx  (the area 

under 

  

Y
2
) is a probability; one must show that it satisfies the axioms of probability 

calculus.  In fact, it can be shown that it does.  See, for example, Ballentine, L. E., (1986). 

Note that normalization requires that the total area under 

  

Y(x,t1)
2
, to wit, that between c 

and d, must be equal to one.    

x 

|Y (x,t1)|2 

c   d a b 
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4.3 The Harmonic Oscillator 

Consider a cube on a frictionless plane attached to a spring fixed to a wall.  

Suppose that the system is in an equilibrium position, corresponding to the relaxed length 

of the spring so that the box is at rest (Fig. 5).  Let us take the origin 0 of the x-coordinate 

to be the position where the center of box is.  Now, we stretch the spring to the right so 

that the center of the box is at 

  

x1 and then we let go.  Obviously, the box will be pulled 

back by the spring, acquire energy which will be spent compressing the spring until its 

center reaches 

  

x2 = -x1.  Then, it will be pushed again by the compressed spring to the 

position it had when we let the box go.  In short, in the absence of friction or external 

forces the box will forever oscillate back and forth between x1 and x2 with simple 

harmonic motion.  Such a system is a harmonic oscillator.   

 
 
 
 
 
 
 
Figure 5 
 

The probability density for the classical harmonic oscillator is plotted below (Fig. 6). 

 

 
 

Figure 6 
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x1 and x2 are called “turning points” because the center of the box cannot go beyond 

them: doing so would be contrary to the laws of mechanics.  The plot tells us that if we 

take random snapshots of the box, the bulk of the snapshots will depict the box near the 

turning points.  On reflection, this is how we would intuitively think it should be, since 

the box moves the slowest close to the turning points and the fastest close to point 0 in 

the middle of the run. 

 However, when we consider the quantum harmonic oscillator, we are in for some 

big surprises.   First we need to plug the (classical) potential energy formula 

  

V x( )=
1

2
kx 2 

(where k is a constant measuring the springiness of the spring and x is the spring’s 

displacement) for the harmonic oscillator into TDSE.  Once we have solved TDSE and 

obtained the wave function, we need to normalize the wave function.  Although this is 

too complex for us to tackle, it turns out that the mathematics of normalization forces the 

quantization of energy.  While the classical harmonic oscillator can have any energy level 

(between any two energy levels, one can always find a third), the quantum harmonic 

oscillator can only be found to have discrete and very definite energy levels E0, E1, E2, 

….6  In addition, while in the classical case the lowest energy level is zero (corresponding 

to the state in which the spring is relaxed and the box does not move), in the quantum 

case the measurement return for lowest possible energy (the energy of what is called “the 

ground state”) is  

                                                 
6 In other words, it turns out that normalization compels the eigenvalues of the energy 

operator (of which more later) to form a discrete set. 
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E0 =
1

2
hw ,         (4.3.1) 

a quantity greater than zero, albeit a very small one.7  The measurement returns of all the 

other possible energy levels (the energies of the excited states) are multiples of E0 

according to the formula 

  

E n = 1+ 2n( )E0 .        (4.3.2)  

 When it comes to position measurements, things are as strange, as we can gather 

from figure 7, which provides the plots of the probability densities for the first four 

energy levels.  (The intersection points between each probability density and the parabola 

at an energy level are the classical turning points for that energy level).  

 

Figure 7 

 

                                                 
7 

  

w 2 =
k

m
, where k is a measure of the springiness of the spring, and m is the mass of the 

cube.  In other words, the stronger the force exercised by the spring, the larger 

  

w 2  is, and 

the larger the mass of the cube, the smaller 

  

w 2  is.  

|Y(x)|2 

 x 

E0 

E1 

 E2 

 E3 
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In an excited state En, there are n positions in the space between the turning points where 

the particle will never be found.  In particular, in all odd states such as E1 or E3 the 

probability of finding the particle exactly in-between the turning points is zero.  In 

addition, the probability of finding the particle outside the classically permitted range 

(beyond the turning points) is not zero, a phenomenon called “tunneling”.  In fact, it turns 

out that the lower the energy, the greater the probability that the particle will tunnel: at 

the ground level, the probability of tunneling is slightly above 15%.  

4.4. Hilbert Spaces  

There is a relation between the wave function and the state vectors we considered 

in the previous chapter, for it turns out that the wave function is a state vector.  The basic 

idea is to construct a type of inner product vector space, called a “Hilbert space”, with 

particular functions as its elements by showing that they are really vectors.  As one might 

expect, the functions in question turn out to be normalizable.  They satisfy the vector 

requirements set out in the last chapter.  The sum of two normalizable functions is also 

normalizable; addition on them is commutative and associative; multiplying a 

normalizable function by a scalar gives another normalizable function; there is a null 

function, 

  

f (x) = 0; each function 

  

f (x) has a function 

  

- f (x)  such that 

  

f (x) + [- f (x)]= 0 ; the inner product of two normalizable functions is defined as 

  

f | g = f (x)*ò g(x)dx , for appropriate limits of integration.  We shall not construct the 

standard Hilbert space L2 here because it involves some (for us) unnecessary 

mathematical niceties.  Suffice it to say that the wave function

  

Y(x, t) , once normalized, 

becomes a normalized vector in L2.   
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In the last chapter, we saw that observables are represented by Hermitian 

operators, and this remains true in Hilbert space.  For example, the position operator is 

  

ˆ x , 

and since it is Hermitian, its eigenfunctions (which can be treated as eigenvectors) are 

orthogonal and form a complete set.  Hence, they constitute an orthonormal basis and any 

state function can always be expanded as a linear superposition of eigenfunctions of the 

position operator.8  Other observables are expressed in position representation by 

operators; for example, momentum is represented by the operator 
  

  

-ih
¶

¶x
. 

We should note that state space does not have any intuitively satisfying relation to 

the ordinary 3-dimensional space of our experience.  The reason is that the state space of 

a particle moving about is infinitely dimensional.  As the particle could occupy an 

infinity of positions and the position operator is Hermitian, there must be an infinite 

number of relevant eigenvectors all orthogonal to each other, which is possible only in an 

infinitely dimensional space.  Hence, it is important not to confuse the 3-dimensional 

space we share with atoms and electrons with the state vector space, which is an abstract 

mathematical entity.  

What we said about position applies to any other observable: every operator 

expressing an observable has its own representation of any other operator expressing an 

observable.  So, for example, the same state function and the same operator representing 

an observable can be expressed in energy representation, in position representation, in 

momentum representation, and so on.  All these representations are equivalent, in the 

                                                 
8 The eigenfunctions in question are Dirac delta-functions.  Their treatment, including 

normalization, involves mathematical subtleties that need not concern us. 
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sense that one does not contain any more information than the other: which 

representation one uses is a pure matter of convenience.9  

Suppose now that at a given time a quantum state is expressed in position 

representation as 

  

Y x( ) and in momentum representation as 

  

f p( ).  Mathematically, 

  

Y x,0( ) and 

  

f p( ) enjoy as special relationship: they are Fourier transforms of each other.  

While any detailed account of this fact is unneeded here, we may note that it has a purely 

mathematical consequence not dependent on the physics of quantum mechanics, namely 

that their widths cannot both simultaneously be made arbitrarily small.  In short, if one of 

the two functions spikes, the other gets correspondingly flat.  So, if we measure position 

on a particle, then the attendant collapse turns 

  

Y x( ) into a Dirac delta function (Figure 9 

in exercise 4.3).  Then, the plot of 

  

f p( ) will be a horizontal line, and therefore so will be 

the momentum probability density 

  

f p( )
2
, which entails that the momentum could take 

any value at all with the same probability.  This is (a version of) the famous Heisenberg 

Uncertainty Principle, a special case of the Generalized Uncertainty Principle we shall 

prove later. 

4.5 Two More Principles 

We can now add two more items to our list of principles of quantum mechanics, 

to wit: 

                                                 
9 One may think of the state function as a proposition that can be fully expressed in 

different languages, where a language is a representation space.  The proposition “It 

rains” can be expressed in English, in German (“Es regnet”), in Italian (“Piove”), and so 

on. 
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5 (Commuting) quantum mechanical Hermitian operators bear to each other the same 

functional relationships obtaining among the classical observables they represent. 

6 The time evolution of a quantum system is given by TDSE. 

Let us comment on them.  Principle (5) is best clarified by an example.  In classical 

mechanics, the kinetic energy is  

  

T =
1

2
mv 2 =

1

2
m

p2

m2
=

p2

2m
,       (4.5.1) 

where 

  

p = mv  is the momentum.  Principle (5) tells us that the same functional relation 

exists among the appropriate quantum mechanical operators.  Hence, by substituting the 

momentum operator (in position representation) for 

  

p , we get  

  

  

ˆ T = (
1

2m

h2

i2

¶ 2

¶x 2
) = (

-h2

2m

¶ 2

¶x 2
).       (4.5.2)  

Similarly, the total mechanical energy is the sum of kinetic and potential energy.  In 

quantum mechanics, the total energy of a system is represented by the energy operator 

  

ˆ H , called “The Hamiltonian”.  Hence, principle (5) tells us that in position 

representation,  

  

  

ˆ H = (
-h2

2m

¶ 2

¶x 2
)+ V (x).10       (4.5.3) 

  Principle (6) tells us that the state vector representing a system changes in time 

according to the Schrödinger equation.  TDSE has three important properties.  First, it is 

                                                 
10 The Hamiltonian in very important in quantum mechanics; for one thing, we can now 

write TDSE as 
  

  

ih
¶Y

¶t
= ˆ H Y , which makes clear that the temporal evolution of the wave 

function is driven by the Hamiltonian.  
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linear. Consequently, if in the temporal interval 

  

t1 - t2 the state vector 

  

Y  evolves into 

  

Y ¢and the state vector 

  

X  into 

  

X ¢, then in the same time interval the state vector 

  

a Y + b X  evolves into 

  

a Y ¢ + b X ¢.  Second, TDSE is first order with respect to time 

(the time derivative is first order).  Hence, given the appropriate initial condition at time 

zero, TDSE totally determines the state vector for all future times.  Third, TDSE preserves 

normalization: if a state vector is normalized at time zero, it stays normalized as it changes 

in time.  In other words, in vector space the state vector changes its direction but not its 

length. We now consider a special type of operator that rotates vectors without altering 

their lengths and does the same job as TDSE.  

4.6 The Evolution Operator 

In quantum mechanics, TDSE does two things: it provides us with the wave 

function 

  

Y(x, t)  and it tells us how 

  

Y(x, t)  evolves over time.  Extracting the wave 

function from TDSE (that is, solving TDSE) is often mathematically very difficult and 

for us unnecessary.  By contrast, understanding TDSE’s second function is relatively 

easy.  We may think of TDSE as a device in vector space that linearly transforms 

  

Y(t0) , 

the state vector at time zero, into 

  

Y(tn ) , the state vector at a later time.  There is a linear 

operator 

  

U t, t0( ), the evolution operator, that does exactly the same thing, so that 

  

U t,t0( ) Y(t0) = Y(t) .11       (4.6.1) 

Note that since 

  

U t, t0( ) is linear, 

                                                 
11 It may be worth noting that if the system is conservative (H is time independent), then 

  

  

U t,t0( )= e
-iH ×(t- t0 )

h . 
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U t,t0( ) c1 y1 t0( ) + c2 y2 t0( )[ ]= c1U t,t0( )y1 t0( ) + c2U t,t0( )y2 t0( ) .  (4.6.2)  

Linearity, embodied in (4.6.2), is a very important property of the evolution operator, that 

is, of how quantum systems evolve in time.  We have already talked about it in the 

previous section, but its importance is such that we consider it again here.  Suppose that 

at time 

  

t0 a system is in state 

  

Y t0( ) = c1 y1 t0( ) + c2 y2 t0( )  and that at time t it has 

evolved into 

  

Y t( ) .  Suppose also that had the system been in state 

  

y1 t0( ) , at time t it 

would have evolved into 

  

y1 t( ) , and had the system been in state 

  

y2 t0( ) , at time t it 

would have evolved into 

  

y2 t( ) .  Then, (4.6.2) tells us that 

  

Y t( ) = c1 y1 t( ) + c2 y2 t( ) .  
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Exercises 

Exercise 4.1 

Suppose that in the density example case discussed in section 4.1, we skipped 

normalization and instead of (4.1.5) we ended up with 

  

Pd =
1

v
= x .  Calculate 

  

Pr(1,2) , 

  

Pr(2,3)  and explain why the result has to be wrong.   

Exercise 4.2 

1. Consider two wave functions 

  

Y1 and 

  

Y2  that are the mirror image of each other with 

the x-coordinate providing the axis of symmetry.  In other words, suppose that at time 

zero 

  

Y1 x( )= -Y2 x( ).  Do they have the same physical meaning? 

2. Suppose that 

  

¢ Y = e id Y, with 

  

d  a real number (the factor 

  

e id
 is called a “global phase 

factor”).  Do

  

Y'  and 

  

Y represent the very same physical state?  [Hint: 

  

x a x b = x a +b  

and 

  

x 0 = 1]  

Exercise 4.3 

What must the plot of a Dirac delta-function look like?  [Hint: Think about collapse and 

the fact that Dirac delta-functions are eigenfunctions of the position operator.] 
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Answers to the Exercises 

Exercise 4.1 

The plot of 

  

Pd =
1

v
= x  is given in figure 8. 

 

 
 
 
 
 
  
 

Figure 8 

Hence, 

  

Pr 1,2( )=
1

2
1+ 2( )×1=

3

2
 and 

  

Pr 2,3( )=
1

2
2 + 3( )×1=

5

2
, which is impossible 

because a probability cannot be greater than 1.  The only way to obtain probabilities 

again is to normalize the results by setting 

  

1= C Pr 1,2( )+ Pr 2,3( )[ ], thus obtaining 

  

C =1/4 , and to multiply the pseudo-probabilities we obtained by C.  The result are the 

correct probabilities of (4.1.7) and (4.1.8). 

Exercise 4.2 

1. Since the only quantity with empirical relevance is the squared modulus of the wave 

function, and 

  

Y x( )
2

= -Y x( )
2
, the answer is “Yes.” 

 2. 

  

e id Y
2

= e id Y( )
*

e id Y( )= e- id Y( ) e id Y( )= e id - id Y
2

= Y
2
.  Hence, 

  

Y'  and 

  

Y represent 

the very same physical state.  

Exercise 4.3 

  1 

1 

  3 x 

Pd 

3 

 2  

2 
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The plot of a Dirac delta-function must look like an infinitely tall and infinitesimally 

narrow spike at point a where the particle has been found and zero everywhere else, as in 

figure 9. 

 
 
   
 
 
 
 
 
 

 

Figure 9 
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d(x) = +¥ 
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